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ABSTRACT:

In this paper attention 1is directed to the systematic
development of possible structure of nonlinear multivariable
system for the prediction of self-oscillations and signal
stabilization. The generalization of the technique along with the
application of Neural Network provides explicit and novel insight
into the problem of greater complexity. The technigue so developed
has been illustrated through example and its accuracy has beer
substantiated comparing with the results from digital simulaticn.

1: Introduction

The importance of system structure in the development of the
technique most suited for analysis of nonlinear self-
oscillations(limit cycles) and signal stabilization has been
implicitly recognized in the literature concerned with two and
higher dimensional nonlinear systems(1, 2, 7]. Signal
stabilization of single input and single output systems
incorporating only one nonlinear element has been extensively
investigated by many researchers[3, 4, 6]. Recently, Neural
Networks, a novel modelling technique captured the attention of
many researchers for partially or fully unknown nonlinear and
ill-defined plant(8].

In this paper the nature of possible structure of nonlinear
multivarible system has been examined and subsequently a most
general structure has been developed. The use of high frequency
sinusoidal dither for signal stabilization of two dimentional
nonlinear system has been determined. This paper deals with the
neural modelling of a two dimentional nonlinear system and
subsequently illustrates through example the potential of neural
networks for limit cycle prediction and signal stabilization which
has been compared with the results of digital simulation.

2: Structure of a General Multivariable Nonlinear System

Consider a nonlinear system incorporating an arbitrary number of
nonlinear elements that can be isolated from the associated linear
elements[(6]. Such a system is schematically represented in
Fig.1(a), where x is a 'l' vector, Yy is a 'm' vector and N is a
'm x l'matrix nonlinear function. The system input u and output ¢
are vectors of dimension 'k' and 'n' respectively. In addition to
the multivariable nonlinear element N, the system may incrporate
any number of arbitrary linear matrix elements of appropriate
dimensions connected in an arbitrary manner. Fig.l(b) shows a
multidimentional signal flow graph representing the most general
situation wherein the signal x can be derived from the vectors
u,y and ¢ passing through appropriate 1linear transfer function
matrices of dimensions 'l x k','l x m' and 'l x n' respectively.
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Ssimilarly the output vectors u, y and x through linear matrix
transmitances of dimension 'n x k' , 'n x m' and 'n-.x 1!
respectively shown in Fig.1l(c). Consequently, the signal flow
graph of the most general representation of the structure of a
system belonging to the class under consideration 1is obtained as
the union of the Figs.l(b) and 1(c). This is shown in Fig.1(d) and
a simplified equivalent signal flow graph is shown in Fig.1l(e)
with its equivalent block diagram representation in Fig.2.

The variables in Fig.2 are related by the equations:

Yy = y(x); x = Gju - HG,y; ¢ = Gy + Gau;

where, u, X, y and ¢ are vectors of dimension k,l,m and n
respectively and G;,6,,63 and H are linear transfer function
matrices of dimensions '1"x k', 'nm x m','n x k 'and 'l x m'
respectively.

3: Analysis of Self Oscillations and Signal Stabilization

For the autonomous state([U] = [0]),the system of Fig.2 can be
equivalently represented as shown in Fig.3. Making use of
Describing function approximation of nonlinear elements, the
matrix equation for the system of Fig.3 can be expressed as:

X = ~HGN(X)X = AX ......... e e (1)

where, A = -HGN(x). Visualizing Eg.l1 as a transformation of the
vector X onto itself, we note that for a limit cycle to exist, the
following two conditions must be satisfied:

(i) For every nontrivial solution of X, the matrix A must
have an eigen value A equal to unity
and, (ii) The eigen vector of A corresponding to this unity eigen
value must be coincident with X.

When the system is exhibiting 1limit cycles the possibility of
quenching limit cycles by injecting a high frequency dither signal
(signal stabilization) can also be examined using the above two
conditions and replacing N by respective equvalent gains[4].
buring the process of signal stabilization the phenomena of

complex oscillations leading to synchronization and
desvnchronizations are examined making use of Dual Input
Describing Functions(DIDF) and Incremental Describing

Functions (IDF) of the nonlinear elements respectively.

As in Fig.5, the modeling of a two dimensional nonlinear system
for prediction of limit cycles and signal stabilization with two
separate neural networks has considered. 1In general for an n-
dimensional system, n separate neural network bloks are required.
The neural network used here is a feed forward network with Kalman
filter algorithm for weight updation during learning phase. The
mean square error is minimized with respect to the summmation
outputs([5], in contrast to the standard conventional
backpropagation algorithm, which is with respect to the weights.
The following steps highlight the weight updation scheme for 3jth
layer of the network,

The Kalman gain vector:
k. - N N . . . .T Ll o1 %
5 (%) (Ry ~(t-1) Xj_‘l(t)}/{bj * x4-17 (V)R (t 1)x3_1(t)]
where, R is the correlation matrix of the training set, X is the
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input vector and b is the forgetting factor.
The update equation:

-1 _ =141y - %o . Tp -1 -1
Ry7H(E) = (Ry7T(E-1) k4 (£)%5-1 Ry7H(£-1) Jby

The forgetting factor updation: b

byb
The weight update equation:

output layer: wpyp(t) = wrk (E-1) + kp(€) (dy - yy)

Hidden layer: wjk(t) = wjk(t—l] + kj(t)ejk(t)pj

where, d is the desired summation output, L is the outputlayer, vy
is the calculated output, e 1is the error and, m 1is the
backpropagation step size.

Example

Consider the system shown in Fig.4 with Gy(s) = 2/s(s+1)2; G,y(s) =
1/s(s+4);and the two nonlinear elements having ideal Trelay
characteristics with M;=1.0 and M,=1.126. Interpreting the systen
of Fig.4 in the form of Fig.3 and employlng the condition (1i;,
i.e., A=1, we get,

1 + NGy + N2G2 + 2N{N5G1Gy = O.nvneniiiciiiiiiiin (2)

Condition (ii) in conjuction with Egn.l1 leads to
X /Xy = [NyG,|/|14N G | or Xy/X, = |[1+N,G,[/[NyGy| .....(3)

Eqn.3 and two equations obtained by separating the real and
imaginary parts of Egn.2 are used in solving three unknowns such
as the frequency of self oscillations(w), amplitude of self
oscillations (X, and X, or C, and C,).

The high frequency signal Bsin w.t is injected at u,[cf Fig.4] and
the signal stabilization is examined. The varlables of complex
osc111at10ns are obtained using Egns.2 and 3 but replacing N, by

(DIDF). The critical value of B for desynchronisation 1is
oétgﬁnea in the same manner but replacing N, and N, by respective
IDFs.

The training patterns required for the training of neural network
for our simulation study has been obtained from the state variable
analysis of the plant. The network used here is a two layer feed
forward network with 16 inputs, 20 hidden layer neurons and 16
cutput layer neurons, the backpropagation step size n is 30, the
slope of the tangent hyperbolic function is 0.1, initial
forgetting factor is 0.9 and forgetting factor is 0.98, number of
iterations is 1500. The results of the exanmple for
selfoscillations, and signal stabilization obtained from
analytical computation, neural network and digital simulation are
shown in table and Fig.6 respectively.

4.Conclusion

In the process of signal stabilization two important limiting
phenomena, namely synchronization and desynchronization in the
class of systems under consideration have been investigated and
the technique for analyzing the phenomena has been presented. The
method of analysis aids the conceptual visualization of the
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mechanism leading to tnese.interesting phenomena occured in the
real time process. The application of neural network based on the
above concept developed through fast backpropagation learning
algorithm can give better results in real time processing of the
multivariable systems. Comparison of results of analysis with the
results from digital simulation and neural computation show that
the use of the technigue in the analysis lead to results with an

acceptable accuracy.
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Fig.1l.S F G BASED DEVELOPMENT OF GENERAL STRUCTURE FOR THE
NONLINEAR MULTIVARIABLE SYSTEM.

Fig.2.BLOCK DIAGRAM REPRESENTATION OF A MOST GENERAL
NONLINEAR MULTIVARIABLE SYSTEM.
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, ~ Fig.5.NEURAL MODEL FOR THE
Fig.4.BLOCK DIAGRAM REPRESENTATION SYSTEM OF Fig.4.

OF THE SYSTEM CONSIDERED
IN THE EXAMPLE.
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