
Applied Soft Computing 3 (2003) 1–21

An evolutionary approach to the automatic
generation of mathematical models

Anjan Kumar Swaina, Alan S. Morrisb,∗
a Indira Gandhi Institute of Technology, Sarang, India

b Department of Automatic Control and Systems Engineering, University of Sheffield, Mappin Street, Sheffield S1 3JD, UK

Received 10 December 2000; received in revised form 9 July 2001; accepted 15 October 2002

Abstract

This paper deals with the development and analysis of an efficient, evolutionary, intelligent, data-based, mathematical
modelling method for complex non-linear systems. A new hybrid evolutionary method using genetic programming (GP)
and evolutionary programming approaches is proposed. The potentials of the hybrid method for modelling complex, dy-
namic systems including single and two-link terrestrial manipulator systems are investigated and simulation results are
presented.
© 2003 Elsevier Science B.V. All rights reserved.
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1. Introduction

The issue of intelligent, data-based modelling, in
the context of evolutionary computation (EC), will
be the primary focus of this paper. The potential of
EC methods for data-based modelling will be inves-
tigated and a new EC-based hybrid method will be
developed to address the vital issue of data-based
modelling. It will be shown that, in general, genetic
programming (GP)-based evolutionary methods for
data-based modelling provide a clear understanding
of the internal structure of any system. While concen-
trating on the development of accurate systems mod-
els, the demerits of approximate system models will
be analysed. Further, it will be argued that the results
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of this paper can be true in general for any data-based
modelling techniques. In addition, it will be shown
that the automatic generation of mathematical models
from the knowledge of the only input–output dataset
with the use of evolutionary methods are not suit-
able for even two-link manipulator systems. Thus,
its applicability will only be limited to very simple
single-link manipulator systems.

Neural networks are widely used for data-based
modelling that is subsequently used for the control of
a system[1–4]. However, the use of neural networks
for the modelling of even simple robotic manipu-
lators has exhibited very limited potential[1]. In
addition, the major problem associated with neural
modelling is that its non-transparent internal structure
inhibits any theoretical understanding of the model
obtained. Hence, the analysis of the global and local
behaviour of the underlying model is very difficult
with a neural modelling approach. This problem of
the non-transparent characteristics of the popular

1568-4946/03/$ – see front matter © 2003 Elsevier Science B.V. All rights reserved.
doi:10.1016/S1568-4946(02)00074-1



2 A.K. Swain, A.S. Morris / Applied Soft Computing 3 (2003) 1–21

neural networks can be addressed with a more trans-
parent symbolic approach like GP. The GP and other
EC methods are discussed briefly inSection 2.

Traditionally, dynamic system modelling problems
are solved with three distinct steps. Initially, a suitable
model structure for the given system is selected. Then,
the parameters contained in the assumed model are
optimised, and subsequently the dataset is validated.
Hence, accurate initial structure selection for a given
system is extremely important for proper system mod-
elling. But, in theory, an infinite number of models
can be built for a given set of data. This necessitates
a judicious development of very effective algorithms
that can quickly transform the initially selected model
into the optimal model of the system. This problem
can be stated as:

For a given input–output dataset, define aµt number
of possible initial model structures. Then, find the
most appropriate model structure amongst them by
manipulating their respective numerical parameters
to best fit the given dataset.

The GP-based approaches have the advantage of
providing a clear view of the underlying structure of
the problem, thus allowing in-depth analysis of the
internal structure plasticity during and after learning.
This provides a better understanding of the problem.
GP-based methods have been used with many re-
ported successes for modelling of moderately complex
dynamical systems[5–8]. The inherent structure of
the tree-coded genetic programming methods can be
used to represent mathematical expressions in mod-
elling simple non-linear systems. Thus, tree-coded
GP methods can be used for the automatic generation
of mathematical models for manipulator systems. GP
works for any problem by randomly selecting initial
tree-structured computer programs that can represent
initial models of the problem. Further, with the use of
variation operators, these structures change to search
for better structures. The power of the GP can further
be enhanced by changing the numerical ephemeral
values associated with each structure. If a particular
structure that can exactly model the given dataset is
present, this may perform badly due to unsuitable nu-
merical values being used for that structure, and this
may cause that structure to be eliminated altogether
from the competition. This can be overcome by using
a good optimisation technique to optimise the numer-

ical values of each structure along with its own evo-
lution [9]. The major concern here is the associated
computational cost, as such a GP is computationally
highly intensive. This has been addressed in this work
by updating the numerical values of only the best
individual structure to improve its fitness value.

Perhaps the first use of hybrid GP and genetic al-
gorithms (GAs) for data modelling was reported by
Howard and D’Angelo[10], who used it to finding
a mathematical relationship between physical and
biological parameters of a stream ecosystem. In an
attempt to model robotic manipulators, Castillo and
Melin [11] suggested a hybrid fuzzy–fractal–genetic
method with comparatively impressive initial re-
sults particularly for single-link manipulators. They
used a fuzzy–fractal method for modelling and a
fuzzy–genetic method for simulation. Unfortunately,
their work does not include sufficient results to make
further comments on their proposed method. Cao
et al. [9] used GA to optimise the parameters of
the tree-structured GP individuals to preserve useful
structures in evolving better differential equations to
fit a given dataset. Later, they extended this concept to
model higher order differential equations for dynami-
cal systems[12]. However, the computational burden
is extremely high in all these hybrid methods, which in
essence prevents widespread use of this hybridisation
philosophy. In order to reduce the computational cost,
a new method called Cauchy-guided evolutionary
programming (CGEP) method has been developed.
To ascertain the potential of the CGEP method, it has
been tested on some important benchmark functions.
The CGEP method is described inSection 3.

Further improvements in modelling performance
are likely to be achieved by a hybrid approach in-
cluding both GP and CGEP methods. The sole aim
of hybridisation is to develop better algorithms for
the automatic generation of mathematical models by
preserving possibly the best structures in a population
pool. As a first step towards the hybridisation of GP
and CGEP, the parameters of the GP individuals are
fed to the CGEP for further optimisation. However,
this increases the execution time tremendously, and it
is therefore not suitable for all applications, particu-
larly real time applications. Hence, in the proposed
hybrid GP and EP, which is named here as the hybrid
genetic evolutionary programming (HGEP) method,
the best individual of any GP generation is further
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optimised by CGEP to better exploit the underlying
structure of the best individual tree. However, in order
to further minimise the execution time, the CGEP is
used only for a few iterations. The HGEP method is
described in detail inSection 4.

Section 5establishes the efficacy of the proposed
hybrid evolutionary algorithm for modelling standard
symbolic regression problems. InSection 6, a standard
model of a simple robotic system is described. Then,
the simple robotic manipulator test problems and the
details of the experimental set-up are described. The
potential results of the experiments on modelling
robotic manipulators are illustrated inSection 7.
Section 8discusses the results thoroughly. Finally, in
Section 9, conclusions of this paper are presented.

2. Evolutionary computation methods

In general, evolutionary computation methods are
a very rich class of multi-agent stochastic search
(MASS) algorithms based on the neo-Darwinian
paradigm of natural evolution, which can perform
exhaustive searches in complex solution space. These
techniques start with searching a population of feasi-
ble solutions generated stochastically. Then, stochas-
tic variations are incorporated into the parameters of
the population in order to evolve the solution to a
global optimum. Thus, these methods provide a rig-
orous search in the entire search domain, taking into
account the maximum possible interactions among
them. The field of research in these evolutionary
methods broadly covers three distinct areas: genetic
algorithms[13], evolution strategies (ES)[14], and EP
[15,16]. The widely used genetic algorithms model
evolution based on observed genetic mechanisms, i.e.
gene level modelling. Whereas, evolution strategy
algorithms model evolution of individuals to better
exploit their environment, and use a purely determin-
istic method of selection. EP algorithms model evo-
lutions of individuals of multiple species competing
for shared resources, and essentially utilise stochastic
selection.

2.1. Evolutionary programming

An evolutionary programming method, which mod-
els evolution at the level of competing species for the

same resources, uses mutation as the sole operator
for the advancement of generation, and the amount of
exploitation and exploration is decided only through
the mutation operator. Usually, in the basic EP (BEP)
[15], the mutation operator produces one offspring
from each parent by adding a Gaussian random vari-
able with zero mean and a variance proportional to the
individual fitness score. The value of standard devia-
tion, which is the square root of the variance, decides
the characteristics of offspring produced with respect
to its parent. A standard deviation close to zero will
produce offspring that have more probability of resem-
bling their parent, and much less probability of being
largely or altogether different from it. As the value of
the standard deviation departs from zero, the probabil-
ity of resemblance of offspring with their parent de-
creases, and probability of producing altogether differ-
ent offspring increases. With this feature, the standard
deviation essentially maintains the trade-off between
exploration and exploitation in a population during
the search.

In recent years, there has been much effort to in-
crease the overall performance of EP in a variety of
problem domains. Historically, the normal (Gaussian)
distribution is used for the generation of mutation
vectors. However, very recently, Cauchy distribution
is proposed as a viable alternative to normal distribu-
tion. Yao et al.[17] have shown that Cauchy mutation
provides faster and better results in comparison to
Gaussian mutation for multi-modal functions with
many local minima. This enhanced performance with
Cauchy distributions is believed to be due to their
much longer and flatter tails, which provide a longer
step size during the search operation.

2.2. Fast EP

The well-established self-adaptive EP methods
work by evolving simultaneously all the object vari-
ables and their corresponding mutation parameters
or step size. A particular set of mutation parameters
associated with an individual survives only when
it produces better object variables. The most com-
mon variant of self-adaptive EP is the canonical
self-adaptive EP (CEP), which is modified with the use
of Cauchy distribution (C(0,1)) and is known as fast
EP (FEP)[17,18], which updates then dimensional
mutated parameter vectorηi and the corresponding
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object variable vectorpi as per the following
equations:

ηij(k + 1) = ηij(k)exp(τN(0,1)+ τ′Nj(0,1))

pij(k+1) = pij(k)+ ηij(k + 1)Cj(0,1)

whereηij andpij are thejth component of theith mu-
tated vector andjth object variable of theith individ-
ual, respectively, and the exogenous parametersτ and

τ′ are set to
(√

2n
)−1

and
(√

2
√
n
)−1

, respectively

[19].

2.3. Genetic programming

Genetic programming is a stochastic adaptive
search technique in the field of automatic program-
ming (AP) that evolves computer programs to solve
or approximately solve problems[20,21]. The evolv-
ing individuals are themselves computer programs
that are often represented by tree structures (other
representations also exist)[21,22]. In the tree repre-
sentation, the individual programs are represented as
rooted trees with ordered branches. Each tree is com-
posed of functions as internal nodes and terminals as
levels of the problem. Syntactically correct programs
are generated by the use of any programming lan-
guage like LISP, C, and C++ that represent programs
internally as parse trees. Koza[20] used LISP, which
has the property that the functions can easily be vi-
sualised as trees with syntax in prefix form, and the
syntax is preserved by restricting the language to suit
the problem with an appropriate number of constants,
variables, statements, functions, and operators. A par-
ticular problem is solved by this restrictive language
formed from a user-definedterminal set T , that may
consist of system inputs, ephemeral constants, and
other constituents to solve a task at hand, andfunction
set F , that usually consists of arithmetic operators
in any problem-specific functions. Each function in
the function set must be able to accept gracefully, as
arguments, the return value of any other function and
any data type in the terminal set. The functions and
terminals are selected a priori in such a way that they
will provide a solution for the problem at hand.

GP starts with an initial population of randomly
generated tree-structured computer programs, as dis-
cussed above. A fitness score is assigned to each

individual program, which evaluates the performance
of the individual on a suitable set of test cases.
Further, each individual undergoes variations to pro-
create new evolved individuals by using any of the
above-mentioned evolutionary computing methods
such as GA, ES and EP. Then, a selection criterion is
fixed to select individuals for the next generation[19].

3. Cauchy-guided EP

3.1. Concepts

Basic evolutionary programming generates one off-
spring from each parent in a population pool by adding
a Gaussian random variable of mean zero and variance
proportional to the fitness score of the parent. Then, a
stochastic competition selects effective parents for the
next generation. In contrast, the CGEP replaces the
normally distributed variations of BEP with a Cauchy
distributed variation. However, a Cauchy distribution
does not posses a finite expected value or standard de-
viation for order less than 1. Hence, a standard form of
Cauchy distribution denoted byC(0,1) and its proba-
bility density function (PDF) and cumulative distribu-
tion function (CDF) are represented as follows[23]:

PDF= π−1(1 + x2)−1c (1)

CDF = 1
2 + π−1 tan−1 x (2)

In essence,C(0,1) by itself does not have the ca-
pability to carry any problem-specific knowledge of
the task at hand. Therefore,C(0,1) alone cannot add
any knowledge to the solution process, but its ran-
dom distribution can be utilised fruitfully to guide the
solution in the apparently right direction towards the
global optimum. So, one problem dependent deter-
ministic factorγ has been formulated, which is then
used along with the randomness ofC(0,1) to escape
from the local optima. Hence, there is increased prob-
ability of directing the solution process towards the
global optimum. Here,γ is selected such that it is
directly proportional to the square root of the fitness
score and inversely proportional to the problem di-
mensions, and is defined for theith individual pi in a
population ofm individuals

γi ∝ 1

n

√
f(pi) = α

n

√
f(pi) (3)
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where f(pi) is the fitness score associated with the
ith individual and 0< α < 1 is a proportionality
constant, andn is the problem dimension. Hence,
the search step size�xij can be represented as
follows:

�xij = Cj(0,1)
α

n

√
f(pi) (4)

Then, theith offspring generated from theith individ-
ual pi can be represented as follows:

pij + Cj(0,1)
α

n

√
f(pi) (5)

where Cj(0,1), j = 1,2, . . . , n, represents the
Cauchy random variate for thejth variable of theith
individual.

3.2. Performance of CGEP

To test the performance of the CGEP over that
of canonical EP (CEP) and fast EP, a set of eight
most typical function minimisation problems from
the benchmark functions[17,20]has been considered.
These functions are:

f1(x) =
n∑
i=1

x2
i , −100≤ xi ≤ 100

f2(x) = −20 exp


−0.2

√√√√1

n

n∑
i=1

x2
i




−exp

(
1

n

n∑
i=1

cos(2πxi)

)
+ 20+ exp(1),

−32 ≤ xi ≤ 32

f3(x) =
n−1∑
i=1

{100(xi+1 − x2
i )

2 + (xi − 1)2},

−30 ≤ xi ≤ 30

f4(x) =
n∑
i=1

|xi| +
n∏
i=1

|xi|, −10 ≤ xi ≤ 10

f5(x) =

 1

500
+

25∑
j=1

1∑2
i=1(xi − aij)6




−1

where

[aij] =
[

−32 −16 0 16 · · · 16 32

−32 −32 −32 −32 · · · 32 32

]
,

and − 65.536≤ xi ≤ 65.536

f6 = 1

4000

n∑
i=1

x2
i −

n∏
i=1

cos

(
xi√

i

)
+ 1,

−600≤ xi ≤ 600

f7 =
n∑
i=1


 i∑
j=1

xj




2

, −100≤ xi ≤ 100

f8 =
n∑
i=1

{x2
i − 10 cos(2πxi)+ 10},

−5.12 ≤ xi ≤ 5.12

Functionf1 is a generalised unimodal sphere func-
tion with a minimum atX = (0, . . . ,0). Functionf2 is
Ackley’s continuous unimodal test function, obtained
by modulating an exponential function with a cosine
wave of moderate amplitude. The term 20+ exp(1) is
added to move the global optimum function value to
zero atX = (0, . . . ,0). Functionf3, the generalised
Rosenbrock’s saddle, has a very steep valley along
xi+1 = x2

i with the global minimum function value
of zero at pointX = (1, . . . ,1). Both the Schwefel’s
function f4 and function f7 have a unique optimal
function value of zero atX = (0, . . . ,0). Function
f5 is typical of De Jong’s five-function test-bed and
contains multiple local optima. This is known as
Shekel’s Foxholes, and is stated to be very patho-
logic. It has the global optimum function value of
0.998004. Griewangk’s functionf6 has many local
minima, which usually misleads the solution from the
global minimumf6(0, . . . ,0) = 0.0. Functionf8 is
a generalised Rastrigin’s function with the optimum
function value of zero at the origin. All of these func-
tions exceptf5 have 30 dimensions, whereasf5 has
two. The typical behaviours of these functions are
described in Yao et al.[17].

All the experiments were performed with a pop-
ulation size of 100 and a tournament size 10. All
experiments on these functions were averaged over 50
independent trials. In the event of the fitness score
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Table 1
Comparisons of average best score between CEP, FEP and CGEP

Function Generation α CEP FEP CGEP

f1 1500 5.5× 10−3 5.75 × 10−2 1.10 × 10−4 2.43 × 10−16

f2 2000 8.0× 10−5 2.58 × 10−3 2.06 × 10−1 3.72 × 10−5

f3 5000 1.0× 10−2 4.227 1.042 2.20× 10−6

f5 20000 3.0× 10−5 1.03 × 1001 5.444 4.00
f9 5000 1.1× 10−3 1.07 × 1002 1.227× 102 0.0
f10 1500 1.5× 10−3 9.675 4.79× 10−3 9.88 × 10−4

f11 2000 1.0× 10−2 8.35 × 10−1 6.29 × 10−2 9.76 × 10−3

f14 100 1.0× 10−2 1.857361 1.407797 0.998004

in the CGEP method being negative, it was set to an
arbitrarily low value of 0.01. FEP and CEP were im-
plemented with a fixed lower bound of 0.0001 on the
mutation parameters. In all the cases, CGEP either out-
performed or at least yielded comparable results with
those of the FEP and CEP. This is illustrated inTable 1.
This shows the potential of CGEP, which is efficient
yet computationally and functionally simple. The pa-
rameters used in the simulation of the CGEP algorithm
are also shown inTable 1. Only one parameterα needs
to be fine-tuned within a very small tuning domain for
all the eight test functions. From the experience with
the tuning of this algorithm, it may be inferred that it
is good practice to start the tuning with a search limit
of 10−5 and progressively check at multiples of 10. It
has been observed that the optimal value ofα lies near
these steps. This clearly verifies the robustness of the
proposed algorithm. It is noteworthy to observe the
test results of functionf5, Shekel’s Foxholes, which
contains a moderate number of local optima. Usu-
ally, all the variants of EP reported in the literature
exhibit constantly degraded performance to arrive
at the global minimum and often stall at local min-
ima. But, interestingly enough, CGEP finds the exact
global optimum value of 0.998004, thereby proving
its superb capacity for optimisation tasks. On all other
functions, the CGEP’s performance is also excellent.
These performances remain consistent with many
other functions.

In essence, the CGEP is a simple variant of BEP.
The major difference between CGEP, CEP and FEP is
that the former is a non-self-adaptive method, whereas
the latter two are self-adaptive. All the three methods,
CGEP, FEP and CEP use Cauchy distribution to evolve
the object variables. The CGEP’s learning ability

depends on the selection of a fixed initial learning co-
efficient. Now, once the efficacy of the CGEP method
has been established, with the added advantage of its
simplicity over CEP and FEP, it is ready to be used
for the parameter optimisation of the parameters of
the best tree in every generation for the GP.

4. Description of HGEP algorithm

The hybrid genetic evolutionary programming is
based on a steady-state GP. In each generation, two
potent tree individuals from the population pool con-
sisting of all the tree individualsPt are selected inde-
pendently by means of tournament selections with a
tournament sizetc. In a tournament of sizetc, all the
individuals compete with each other and finally the
winner is selected amongst them. Then, the selected
tree individuals generate offspring by using the simple
subtree crossover mechanism. Subsequently, the off-
spring replace the two worst parents by using a similar
tournament method. Thereafter, a mutation operation
is performed depending on the problem complexities.
For complex problems, it is very often necessary to
perform a mutation operation to generate possibly
quite different solution trees. The mutation operator
selects worst tree individuals from the independent
tournament of sizetm. Then, each of the selected indi-
viduals are mutated through a series of randomly se-
lected mutation operations̄M0 from the setM̄, where
M̄ ⊆ {OneNode,RandNodes,Swap,Grow,Trunc,
Gaussian}. These mutation operators work as follows:
(i) the OneNode mutation operator replaces a ran-
domly selected tree node with another random node
of the same arity; (ii) inRandNodes, a particular node
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in a tree is replaced by a random node of the same
arity with a very low probability; (iii) theSwap mu-
tation operator swaps the arguments of a randomly
selected node of arity more than one; (iv) then, the
Grow operator selects a terminal node randomly, and
replaces that with a randomly generated subtree of
pre-specified size; (v) theTrunc mutation operator
randomly selects a function node and replaces the
complete subtree starting at that node with a terminal
node; (vi) then, theGaussian operator acts on a ran-
domly selected numerical terminal node, and perturbs
that with a Gaussian variate of mean zero and stan-
dard deviation 0.1. The number of mutation operators
are selected as per a Poisson variate. To gain a better
understanding of the action of these mutation opera-
tors, let the Poisson variate be 3. Now, three mutation
operators will be selected randomly with replacement
from the mutation set̄M. Suppose, the randomly se-
lected three mutation operators areOneNode, Grow
andGaussian. Then, the action of all the three muta-
tion operators on a pre-selected tree individualpm

t to
procreate an offspring om

t can be given as follows:

om
t = Gaussian(Grow(OneNode(pm

t ))),

where the superscript ‘m’ indicates that it is a mutation
related operation. Here, the offspring directly replaces
its parent.

Now, the best individualpb
t in the population pool

Pt is selected. Then, CGEP works on a single indi-
vidual p1 = {p1j|j ∈ (1, . . . , n0)}, which is formed
with the numerical nodes (constant terminal nodes) of
pb

t . Thus, the sizen0 of this individual is not a con-
stant, but depends on the number of numerical nodes in
the best tree individualpb

t . Subsequently,λ offspring
are generated fromp1 by perturbing its object vari-
ables by a Cauchy variate of mode zero and median
(α/n0)

√
f(p1). Then, a stochastic tournament selec-

tion with ‘c’ number of competitors is used to decide
the individual to be used to construct the new and more
potent individual treepn

t with the same structure as
that ofpb

t . Finally,pn
t replaces the worst tree individ-

ual in the entire population pool of tree individualsPt.
Then, the new pool of tree individuals after crossover,
mutation and CGEP optimisation is ready for the next
generation. The complete pseudo-code of the HGEP
algorithm is shown inTable 2.

5. Hybrid genetic evolutionary programming
for symbolic regression

5.1. Test problems

After the development of the HGEP algorithm, its
performance on standard problems must be tested
before it can be applied to any complex non-linear
system. For the verification of the potential of HGEP,
two test problems of symbolic regression have been
chosen. The first test problem is a single input regres-
sion problem, whereas the second one is a two-input
regression problem. The second problem was selected
to study the effects of multiple inputs on the perfor-
mance of different GP-based algorithm. Both these
test problems are described below.

5.1.1. Test problem 1: one-input symbolic regression
Given a finite input–output dataset from the equa-

tion, y = 2.719x2 + 3.14161x, the goal is to find the
underlying model from the dataset.

5.1.2. Test problem 2: two-input symbolic regression
Given a finite input–output dataset from the equa-

tion, z = x2 + y2, the goal is to find the underlying
model from the dataset.

5.2. Experimental set-up

5.2.1. Test problem 1: one-input symbolic regression
For this problem, 20 input–output data points in

the range between−1 and 1 were selected randomly.
Generation of random tree structures and subsequent
manipulation of these trees was performed using
steady-state GP and HGEP method. Initial trees were
generated using a grow method. The function and
terminal sets were:F = {+,−,×, /} and T =
{x,U(−1,1)}, whereU(−1,1) is a random number
between−1 and 1. The parameters used for the GP
part of the HGEP for this problem are shown in
Table 3and the parameters for the CGEP to optimize
the ephemeral constants are shown inTable 4. CGEP
used a stochastic (1+ 10) selection method.

5.2.2. Test problem 2: two-input symbolic regression
Similar to the single-input regression problem, a

steady-state GP and HGEP were used. The initial
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Table 2
Pseudo-code of hybrid genetic evolutionary programming (HGEP) algorithm

Given:
GP parameters:
A function setF and a terminal setT , probability of crossover, probability of mutation for all node mutation, probability of

terminal node selection, Poisson mean, tournament size for parent selection for crossover (tc) and mutation (tm), tree
initialisation method (grow, full or ramped-half-and-half), tree population sizeµt, number of fitness cases, maximum tree
depth after crossover/mutation, maximum size of a mutant subtree

EP parameters:
Learning coefficientα, EP population sizeµ, number of iterations, number of offspringλ, number of competitionc

Step 1.Initialisation:
Initialise a population poolPt for the GP, consisting of tree individuals
for i := 1 to µt do

pt[i]:= randomly generate tree individuals;a

wherept[i] represents theith individual tree;

Step 2.Evaluation:
Evaluate the individuals
for i := 1 to µt do

Evaluate (pt[i]); //assign a fitness value to each tree individual

Step 3.Recombination (subtree crossover):
(i) Select two parents for crossover

Select randomly a group oftc individuals comp[i] ∀i ∈ {1, . . . , tc} from the population poolPt

for i := 1 to tc do
ir = an integer random number∈ U(0, µt);

comp[i] = pt[ir];
pc1t = comp[1];
for i := 1 to tc do

if (f(pc1t ) < f(comp[i]))pc1t = comp[i];
Similarly, select the second parent for crossoverpc2t ;

(ii) Select crossover sites
cn1 = randomly select a node onpc1t
cn2 = randomly select a node onpc2t

(iii) Exchange subtrees with root nodescn1 andcn2 betweenpc1t andpc2t to generate two offspringoc1t and oc2t
(iv) Replacement of two tree individuals fromPt with offspring oc1t and oc2t

Select the worst individual to be replaced
ir1 = an integer random number∈ U(0, µt);
for i := 1 to tc do

do
ir2 = an integer random number∈ U(0, µt);

while(ir1 �= ir2);
if(f(pt[irl] ) > f(pt[ir2]))ir1 = ir2;
pt[ir1] = oc1t ; //replace one individual

Repeat the above process to placeoc2t in the poolPt

Step 4.Mutation:
(i) Select parents for mutation operationb

Select randomly a group oftm individuals comp[i] ∀i ∈ {1, tm} from the population poolPt

for i := 1 to tm do
ir = an integer random number∈ U(0, µt);
comp[i] = pt[ir];
pm1

t = comp[1];
for i := 1 to tm do

if(f(pm1
t ) < f(comp[i]))pm1

t = comp[i];
Similarly, select the second parent for mutationpm2

t
(ii) Calculate the number of mutation operationsγp from a Poisson distribution with a given mean
(iii) Generate offspring by mutation
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Table 2 (Continued )

while(γp �= 0)
Randomly select a mutation operatorM0 from the mutation operator set
M̄|M̄0 ∈ M̄ ⊆ {OneNode,RandNodes,Swap,Grow,Trunc,Gaussian};

om1
t = M̄0(p

m1
t );

γp = γp − 1;
Similarly, generate the second offspringom2

t by mutation;
(iv) Replacement of offspring

Each offspring replace its parent
pm1

t = om1
t ;

pm2
t = om2

t ;

Step 5.EP calculations:
(i) Select the best tree individual
pb

t = pt[1];
i := 2 to µt do

if(f(pb
t ) < f(pt[i]))pb

t = pt[i];
(ii) Gather the parameters ofpb

t as a row vector p[1]:{p[1]|p[1][j], ∀j ∈ {1, . . . , no}} with no the number of parameters in the treepb
t

(iii) Evaluate (p[1]); //assign a fitness value
(iv) Generateλ offspring from p[1] by mutation operation as described below
Mutation:
Calculate:
for j := 1 to no do

s[j] :=
√
f(pb

t )

no
;;

wheres[j] is the scale factor for thejth element, andpb
t the fitness of the best tree individualpb

t , which mapspb
t → 3

Mutate:
for i := 1 to λ do

for j := 1 to no do
C=generate a Gaussian random numberC(0,1);
p[i+ 1][j] = p[1][j] + Cs[j];

whereC(0,1) represents a standard Cauchy variable
Evaluation:
Evaluate the offspring
for i := 1 to λ do
for j := 1 to no do
Evaluate(p[i][ j]); //assign fitness equal to the fitness with parameters ofpt and the structure ofpb

t
Selection:
Select one individual from (λ+ 1) individuals by using a stochastic competition comprising of ‘c’ number of participant individuals

for i := 1 to (λ+ 1) do
wt[i] := 0.0;
for j := 1 to c do
t := [(λ+ 1)U(0,1)];

if f(p[i]) ≤ f(p[t])
then wt[i] := wt[i] + 1;

where [·] denotes a greatest integer function
for i := 1 to (λ+ 1) do

for j := 1 to no do
Select the best individual according to its weight wt (i.e. number of wins)

Step 6. If termination condition is not reached return to step 3

a Here, each individual consists of one tree. However, for multiple output systems, parallel trees can be generated analogous to the
number of object variables per individual in a real coded evolutionary algorithm.

b The number of parents to be mutated can be any number between 0 andµt. However, for this research work, two parents are
considered to undergo mutation.
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Table 3
GP parameter values for one-input regression analysis

Parameters Values

Population size 300
Probability of leaf selection 0.5
Maximum tree depth after crossover 17
Probability of mutation 0
Number of crossover operations per generation 2
Tournament size 4
Number of fitness cases 20
Initial tree depths 5
Crossover probability 1.0
Number of generations 200

Table 4
CGEP parameter settings for regression analysis

Parameter Value

Population size 1
Tournament size 4
Learning coefficient (α) 0.0005
Number of offspring 5
Number of iterations 3

Table 5
GP parameter values for two-input regression analysis

Parameter Value

Population size 300
Probability of leaf selection 0.5
Maximum tree depth after crossover 17
Probability of mutation 0
Number of crossover operations per generation 2
Tournament size 4
Number of fitness cases 20
Initial tree depths 5
Crossover probability 1.0
Number of generations 400

Table 6
Average best and average mean results of HGEP and GP of one-input regression problem

HGEP GP t-test (GP–HGEP)

Average best Average mean Average best Average mean Average best Average mean

0.984433
(0.0474164)

0.822811
(0.0345126)

0.868407
(0.124908)

0.323265
(0.0338958)

3.68467
(0.00503883)

31.4079
(1.64962E−10)

The bracketed quantities indicate the standard deviation for HGEP and GP, and fort-test, these indicate significance values.

training set of 20 independent data points was se-
lected randomly within the open interval (−1, 1). The
parameters used for the GP part of the HGEP are
illustrated inTable 5. However, the parameters used
for the EP part of HGEP are kept the same as for
single-input regression, as shown inTable 4.

The fitness of an individual tree has been calculated
as the sum-square error of all the fitness cases used to
build the model. The overall fitness can be expressed
as follows:

Fitnor = 1

1 + Fitind

where Fitnor is the normalised overall fitness and in-
dividual tree fitness

Fitind =
m∑
i=1

e2
i

with m being the number of fitness cases.

6. Results

6.1. Test problem 1: one-input symbolic regression

All the results of HGEP have been compared with
a simple GP method. The average best and average
mean results of 10 independent runs of HGEP and GP
are shown inTable 6. The correspondingt-test results
are also included inTable 6. The t-test results indi-
cate the statistical significance of the results obtained
from the GP and HGEP methods in 10 different trials.
When thet-values are negative it suggests that the first
of the two methods under test is better than the sec-
ond one. The convergence characteristics of the aver-
age best and average mean results of both HGEP and
GP are shown inFig. 1. It is clear fromFig. 1 that
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Fig. 1. Average best and mean characteristics of HGEP and GP methods for one input symbolic regression problem.

both average best and average mean results of HGEP
are exceedingly better than simple GP. Out of 10 inde-
pendent runs, HGEP yield the best fitness score cor-
responding to the actual model, which is one, in eight
cases. In contrast, simple GP did not succeed in any of
the runs to achieve this value. It is interesting to note
that, in all the eight cases out of the 10 runs, although
the best tree individuals have the same fitness value
of one, their structures are completely different from
each other. This in turn implies that, for a particular
dataset, there could be many valid models. Now, three
of the prominent results of HGEP are depicted below
for further examination.

Trial 6: The program tree in prefix notation can be
represented as follows:

(/(/(x(/(/(0.367910, −(x− 1.155566))

−(x− 0.000041))x)

and this can be simplified to

y = (x+ 1.155566)(x+ 0.000041)

0.367910
= 2.718056x2 + 3.14078171x

+1.2877662× 10−0.4

Trial 7: Here, the program tree in prefix notation can
be represented as follows:

(+(−(x(−(∗(x− 1.141644))

×(∗(/(−(x(∗(x− 0.311497)))0.482349)x))x)

This can be simplified into

y = 2x+ 1.141644x+ 1.311497x2

0.482349
= 2.7189794x2 + 3.141644x

Trial 8: Here, the program tree in prefix notation can
be represented as follows:

(∗(/(+(∗(−0.352884x)− 0.407616)−0.259527)

×(+(xx))))

This can be simplified into

y =
(−0.352884x− 0.407616

−0.259527

)
2x

= 2.7194396x2 + 3.1412223x

In all the three cases discussed above, the resultant
models represent the exact model very closely. Out of
these, the results in trial 7 are the best in terms of its
accuracy, but the number of nodes is the largest. This
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suggests that minimisation of the number of nodes to
represent a problem may not be a good option in the
broader field of tree-based program optimisation.

On the other hand, the best tree in all the 10 in-
dependent runs with simple GP was produced in the
sixth trial with best fitness value of 0.968983. The cor-
responding tree individual has been presented below.

The program tree in prefix notation can be repre-
sented as follows:

(+(−(+(xx)∗(−(0.106337x)(+(−0.381775

×(/(x 0.402704))))))(−(/(x 0.472469)0.060648))))

This can be simplified into

y = 2.4832135x2 + 3.0151025x− 0.0200511

Thus, it is clear from these results that HGEP out-
performs simple GP on a one-input symbolic regres-
sion problem.

6.2. Test problem 2: two-input symbolic regression

For the two-input symbolic regression problem, the
number of generations was increased to 400 as com-
pared to 200 in a one-input symbolic regression prob-
lem. This was essential because problem complexity
increases with the increase of the number of inputs.
Increasing the number of inputs expands the possi-
ble search space exponentially. Thus, two-input re-
gression problems are seemingly more complex than
the single-input regression problems. The average best
and average mean results averaged over 10 indepen-
dent runs for both HGEP and GP are presented in
Table 7. All the statistical results are also included in
Table 7. Here, it is very important to observe that the
average best result at the end of the 400th generation
in the case of GP is better than HGEP. Thet-test re-
sults indicate that the average best results of HGEP and
GP are not significantly different, whereas the average

Table 7
Average best and average mean results of HGEP and GP of two-input regression problem

HGEP GP t-test (GP–HGEP)

Average best Average mean Average best Average mean Average best Average mean

0.957286
(0.0311985)

0.940225
(0.266465)

0.959103
(0.010246)

0.875574
(0.0337756)

−0.176124
(0.864096)

4.14208
(0.00251386)

The bracketed quantities indicate the standard deviation for HGEP and GP, and fort-test, these indicate significance values.

Table 8
Average best results of HGEP and GP in all the 10 trials

Trial HGEP GP

1 1.000000 0.952590
2 0.977641 0.964483
3 0.966503 0.962350
4 0.934917 0.969220
5 0.934917 0.942918
6 0.896411 0.951134
7 0.946584 0.964510
8 0.985854 0.963643
9 0.983452 0.946353

10 0.946584 0.973827

mean results of HGEP are much better than those of
GP. However, the convergence characteristics of both
HGEP and GP, as shown inFig. 2, indicate that the
average best results of HGEP are consistently slightly
better than GP over most of the generations except to-
wards the end.Table 8examines the fitness values of
the best individual at the 400th generation for all the
10 runs. It can be seen that the best fitness values in
all the runs of HGEP are widely scattered compared to
those of GP. Also, it is worth noticing that the best fit-
ness value corresponding to the exact model, i.e. one,
is only obtained once in HGEP, whereas in GP it is
not reached in any of the 10 runs. This shows that the
HGEP found a closely matched model but GP could
not. Now, the best tree in all the 10 runs of HGEP and
GP are described next.

The best tree of HGEP at trial 1 with a fitness value
of one has been given as follows:

(+(∗(yy))(∗(xx)))

This can be simplified to

z = x2 + y2

wherez is the output. Thus, it exactly represents the
actual model.
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Fig. 2. Average best and mean characteristics of HGEP and GP methods for two-input symbolic regression problem.

The best tree of GP at trial 10 with fitness score
0.973827 has been shown below:

(∗(−(+(y(−(xx)))(∗(∗(x(∗(−0.239596y)))

×(∗(0.126988x)))))+ (∗x(∗(x(+(∗(x∗(xx)))

+(y(∗(∗(0.022461(−(xx))))(+(∗(−0.239786x)y))

×(+(y(∗(∗(0.022461y)(+(∗(−0.239786x))y))))

This can be simplified to

z = x5 + yx2 + y − 0.053858333xy + 0.22461y2

Although the fitness is not far from the actual model
fitness of one, the resulting model is hopelessly bad.
This shows that the fitness score may not be taken as a
confirmation of model accuracy. Also, it is important
to note the experimentation also established that even

M(q) =
[
l22m2 + 2l1l2m2c2 + l21(m1 +m2) l22m2 + l1l2m2c2

l22m2 + l1l2m2c2 l22m2

]
(7)

increasing the number of generations by 10 times did
not improve the performance of GP.

7. Experimental studies on robot modelling

The dynamic model of an-link terrestrial manipu-
lator system with all the masses assumed to be point
masses at the distal end of each link and gravity terms,
can be expressed as follows[24]:

T = M(q)q̈+C(q, q̇)+ G(q) (6)

whereT ∈ 3n is the driving torque vector,q, q̇ and
q̈ ∈ 3n are the joint position, velocity and acceleration
vectors, respectively,M(q) ∈ 3n×n is the mass matrix
of the manipulator,C(q, q̇) ∈ 3n the centrifugal and
coriolis terms andG(q) ∈ 3n the gravity vector. Here,
the gravity terms are considered just to represent the
complete terrestrial system. For a two-link manipula-
tor having link lengthsl1, l2 and corresponding mass
m1, m2, the matrices and vectors inEq. (6) can be
represented as follows:

wherec2 = cos(q2) andM(q) is a symmetric, positive
definite matrix.
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C(q, q̇) =
[
m2l1l2s2q̇

2
2 −m2l1l2s2q̇1q̇2

m2l1l2s2q̇
2
1

]
(8)

wheres2 = sin(q2).

G(q) =
[
m2l2gc12 + (m1 +m2)l1gc1

m2l2gc12

]
(9)

wherec1 = cos(q1) andc12 = cos(q1 + q2).

7.1. Test problems

The following two test problems were used to gen-
erate the initial dataset for verifying the potential of
the proposed HGEP method for extracting the under-
lying model.

7.1.1. Test problem 1: single-link robot manipulator
From Eq. (6), the equations of motion of a

single-link manipulator can be expressed as follows:

τ1 = l21m1q̈1 +m1l1gc1 (10)

Now, the joint acceleration̈q1 can be represented as
follows:

q̈1 = 1

l21m1
(τ1 −m1l1gc1) (11)

Eqs. (10) and (11)involve less complexities compared
to the two-link manipulator described next.

7.1.2. Test problem 2: forward dynamics model of
two-link robot manipulator

The general form of the equation of motion of a
manipulator system is given inEq. (6). For a two-link
manipulator withEqs. (7)–(9), the forward dynamics
equation can be represented as follows:

q̈ = M−1(q)(T − C(q, q̇)− G(q)) (12)

This is a highly complex modelling problem due to
the presence of the non-linear coupling between the
parameters of the two links of the manipulator.

7.2. Experimental set-up

The experiments on the above two problems were
performed under quite different conditions. These are
discussed below.

Table 9
GP parameter values for single-link manipulator

Parameter Value

Population size 100
Probability of leaf selection 0.5
Maximum depth after crossover 17
Probability of mutation 0
Number of crossover operations per generation 2
Tournament size 4
Number of fitness cases 20
Initial tree depths 5
Number of generations 300
Number of crossover operations per generation 0

7.2.1. Test problem 1: single-link robot manipulator
The dataset consisting of 20 input–output samples

was generated fromEq. (11)for a random torqueτ1
between−5 and 5. Here, a normal grow initialisation
method was used for generating initial tree individuals.
The parameters used for the GP part of the HGEP
are illustrated inTable 9. Here, the GP part of the
HGEP uses a steady-state GP for extracting the model
from the supplied data points. The parameters of the
CGEP were kept the same as those inTable 4. The
experiments were performed on two cases of function
setsF and terminal setsT . The function and terminal
sets are described below.

Case 1. F = {+,−,×, /} and T = {τ1, cos(q1),
U(−1,1)}, whereU(−1,1) is a random number be-
tween –1 and 1.

Case 2. F = {+,−,×, /, cos} and T = {τ1, q1, U

(−1,1)}.

The parameters of the robotic manipulator system are
shown inTable 10.

7.2.2. Test problem 2: forward dynamics model of
two-link robot manipulator

The model represented inEq. (12) is a highly
complex and coupled system. The values of joint

Table 10
Manipulator parameter setting

Parameter Value

Mass of each links 1 kg
Acceleration due to gravity 9.8 m/s2

Lengths of each link 1 m
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acceleration associated with any link depend on the
torque, joint velocity, joint angle and masses and link
lengths of both the links of the manipulator. This
complicates the selection of the combinations of in-
puts to form the initial training dataset. It has already
been shown that the increase in the number of inputs
increases the complexity of the problem and it be-
comes hard to get the exact model. Because of this,
the number of inputs are relatively high in a two-link
manipulator problem. In addition, there are equally
large numbers of possible input patterns that generate
different actions of the manipulator. However, for a
manipulator system to perform a particular task, a
fixed pattern of joint and end-effector paths must be
followed. Moreover, a particular task excites only
certain specific modes of the manipulator. Hence, it
is very likely that the dataset used for the modelling
task is biased towards the specific job for which the
data has been collected. This in fact says that it is very
unlikely that a general model for a robotic manipula-
tor system can be found. In this work three different
input–output datasets are generated and tested for
model building.

Case 1 (A single randomly generated sinusoid). Here
joint angles are assumed to follow sinusoidal varia-
tions:

qd = qmax(1 − cosωt) (13)

whereqd is the desired joint angle,qmax ∈ U(0,0.2)
is the maximum value of the sinusoidal joint variation
and ω ∈ U(0,2π) is the angular frequency of the
sinusoid. Here,qmax andω were chosen randomly in
the prescribed open interval. A total of 40 data points
have been generated within a time period of [0,1) for
each of the possible inputs for the model building.

Case 2 (Two randomly generated sinusoids). In this
case, 20 data points with each selection ofqmax and
ω were generated. Thus, the entire training dataset
generated fromEq. (13)total of 40 data points for each
input. The choice of this number of inputs was made
in order to keep the number of fitness cases fixed at a
value of 40 in both the Cases 1 and 2.

Case 3 (Multiple sinusoids). Here, 20 sinusoids of
random amplitude and frequency were selected for

Table 11
Parameter values for the GP part of the HGEP for two-link ma-
nipulator

Parameter Value

Population size 300
Probability of leaf selection 0.5
Maximum depth after crossover 17
Probability of mutation in RandNode 0.05
Number of crossover

operations per generation
2

Tournament size 4
Number of fitness cases 40
Initial tree depths (8, 7, 6, 5, 4)
Number of generations 16000
Number of mutation

operations per generation
2

each joint angle variation. The sinusoidal equation
used here is given as follows:

qd = 1
2(q

max)cosωt (14)

UsingEq. (14), 40 data points (torque) were generated
with qmax varying uniformly and randomly between
0 and 3, andω varying between 0 and 2π. Thus, a
total of 800 input–output data points were used to train
the GP trees. Each tree is allowed to be exposed to a
particular sinusoid for only two generations. Hence,
80 generations are required for the GP trees to face all
the data points in the input–output dataset.

In every generation, two individuals were selected
each for crossover and mutation operation. The
ephemeral constants of the best tree in each gen-
eration are evolved using CGEP. The function and
terminal sets for this problem are:F = {+,−,×, /},
T = {τ1, τ2, q1, q2, q̇1, q̇2, cos(q1), cos(q2), sin(q1),

sin(q2)}. Then, initial GP trees are generated using a
ramped half-and-half method. The GP parameters are
shown inTable 11. The CGEP parameters are set to
exactly the same values as those used in regression
analysis, and are tabulated inTable 4.

8. Results

It has already been discussed that HGEP outper-
forms simple GP on both symbolic regression test
problems. Hence in this section, both HGEP and GP
are considered for the one-link manipulator, whereas
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Table 12
Average best and average mean results of HGEP and GP for one-link robotic manipulator system

Case studies HGEP GP t-test (GP–HGEP)

Average best Average mean Average best Average mean Average best Average mean

Case 1 0.923908
(0.240179)

0.782405
(0.234272)

0.639269
(0.297452)

0.073540
(0.036198)

2.01015
(0.0753096)

9.24509
(6.85E−06)

Case 2 0.470207
(0.335021)

0.344297
(0.318587)

0.207283
(0.275412)

0.036934
(0.016351)

1.98864
(0.0779675)

3.1308
(0.0120616).

The bracketed quantities indicate the standard deviation for HGEP and GP, and fort-test, these indicate significance values. Case 1 is with
pre-processed inputs and Case 2 is without any pre-processed inputs.

only HGEP has been used to extract the model for
the complex two-link manipulator system. For all the
tests, the best result of the 10 independent runs of
HGEP and GP has been chosen as the final model of
the system.

8.1. Test problem 1: single-link robot manipulator

Case 1 considers pre-processed inputs, i.e. the input
joint angle is pre-processed through a cosine function
before being fed to the individual trees. In the context
of neural networks, Lewis et al.[25,26] showed that
inputs pre-processed with system knowledge impart
less training burden on the network, and thus result
in better overall performance. Whereas, in Case 2, the

Fig. 3. Average best and mean characteristics of HGEP and GP for one-link manipulator.

inputs were fed directly without any pre-processing of
the inputs. Hence, a cosine function has been included
in the function set to extract the underlying cosine
relationships from the dataset.

The average best and average mean results averaged
over 10 independent runs are shown inTable 12. The
results for Case 1 have shown clearly the excellent
performance of HGEP compared with GP.

Also, for Case 2, the results of HGEP are better
than simple GP. The convergence characteristics for
Cases 1 and 2 are shown inFigs. 3 and 4, respectively.
The result inFig. 3 clearly exhibit the potency of the
HGEP method. Moreover, inFig. 4, for Case 2, the
trend of the convergence characteristics of HGEP is
constantly improving over the generations, whereas
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Fig. 4. Average best and mean characteristics of HGEP and GP for one-link manipulator.

for simple GP the trend is almost flat, showing almost
no improvement with the advance of generation. The
degraded performance in Case 2 clearly shows that
automatic model generation with pre-processed inputs
always extract better models from the given datasets.

Case 1. The best model obtained from the HGEP in
Case 1, is given as follows:

(+(x(/(y(∗(−0.258717,0.394407))))))

and this can be rewritten as follows:

z = x− 9.800098y

wherez = q̈1 is the output of the tree individual,x =
τ1, andy = cos(q1). As such, in 8 out of the 10 runs,
HGEP achieved the best fitness value of one. However,
the rest of the best trees with fitness value of one are
all structurally distinct from each other.

The best result of the simple GP in all the 10 runs
for Case 1 has the fitness of 0.961528, and is given as
follows:

(+(−(+(−(xy)(/(y − 0.265441))y)(/(y 0.265441))))

This can be simplified to

z = x− 2y

Clearly, the performance of simple GP is extremely
poor.

Case 2. On this five-function set, HGEP was able to
achieve the targeted best value of one in 1 of the 10 in-
dependent runs, and the result is expressed as follows:

(−(/(%(y))− 0.102035)

×(/(x(−(−0.322667,0.676530)))))

This, in its simplified form, can be written as follows:

z = 1.00008036x− 9.8005586 cos(y)

wherex = τ1, y = q1 andz = q̈1.
In this case, the best tree of simple GP in all the 10

generations has a fitness of 0.792843, and is expressed
as follows:

(∗(/(/(%(y))y)(−(%(0.466546))

×(%(−0.041987)))y))

This, in its simplified notation, is given as follows:

z = −9.4347242 cos(y)

wherey = q1 andz = q̈1.
Above results show that the performance of simple

GP is not good at all. Moreover, it can be seen that a
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higher value of fitness close to one may not necessarily
generate a good model. At least until now, it is clear
that a fitness value of one generates a quite accurate
model.

8.2. Test problem 2: forward dynamics model of
two-link robot manipulator

Here, for all the model description, the termsx, y,
a, b, c, d, e, f, g andh denoteτ1, τ2, q1, q2, q̇1, q̇2,
cos(q1), cos(q2), sin(q1) and sin(q2), respectively.

Case 1. The evolved tree for̈q1 is expressed as fol-
lows:

(A+ B + CD)E

where

A= g

f 13
;

B= 0.504441

(
a4

e4f 11
+ ea

0.498535(ga − e)

)
;

C= f + C′ + C′′

with

C′ = a

f 8
+ 0.773701

(
g

f 5
− ef 4

a

)
;

C′′ = a

f 6

{
f − 3.893349

(
a2 − e

a

)}
− ef 9

a

D = e+ b; E =
(
g

f 14
− ef13

g

)

The second outpuẗq2 in its simplified form, can be
expressed as̈q2 = 0.102055e+ 0.0346979.

Case 2. The evolved tree for̈q1, in its simplified form,
can be expressed as follows:

q̈1 = g− 5.121055af

−
{(
d − 0.039398+ d + xb

A

)
+ B

}
C +D

where

A = g(e− 0.289854)

xb
+ xb

c − 0.091650
A′ + A′′

with

A′ =
(
a

c
+ xb

e− 0.289854

)
g;

A′′ = c + d(a+ b− e− 2f + 2g− 6.388320);
B = (2a− f)

{
f +

(
g

b+ c + 0.45697

)

×
(

bg

eb
+ bc + 2b+ c + 0.045697

)}
;

C = c

c + g+ f + 2ceg − 1.026757
;

D = 2g− f − 0.328311b

f − bg
+ d − c(d + g)

×(2g− f − 0.212758)+ d

+ xbe2(b+ c − 0.141237)

(b+ c + xb − 141237)g+D′

with

D′ = e(b+ c − 0.141237)(c − 0.045493)

The second outpuẗq2, in its simplified form, can be
expressed as follows:

q̈2 = ad + 2h+ 2a2d + (a+ 0.3599003c

−0.6119268)

(
ad

c

)
+ ac3d + 2adh

−1.153011ad + 0.12511

Case 3. The evolved tree in this case is very large,
and in readable form it can be represented as follows:

q̈1 = (A− BC)D

(E + F)G

whereA, B, C, D, E, F andG are functions of manip-
ulator parameters and are expressed as

A= eb + d

x− (b/(ef − y))
;

B= 0.4915a

(
g− b+ h

b

)
(f − b);

C= d + y − 0.406856

0.406856
;

D= −by(x+ 2.19286)

(b/y)+ x− y
;

E=
(

−1.40468+ d + by

0.308786

)
e

b
; F = by

cef
;

G= d + y − 0.406856

0.406856
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For this case, the average score is 0.802978 and the
best score is 0.999921. Similar results were noted for
q̈2.

All the experiments on the two-link manipulator
were performed with pre-processed inputs. In Case 1,
the evolved model is much simpler in structure com-
pared to other two cases. This is mostly because of the
use of the data points from a single sinusoid. More-
over, in all the cases, the results do not provide the
actual model from which the dataset was generated,
although the fitness scores are relatively high. This
suggests that the resultant structure in these cases is
biased by some dominant modes of the training data,
and thus drags the system to that particular mode. It
thus appears that the HGEP-based modelling scheme
provides a local model rather than a global one. This
provision of more clarity to the underlying situation is
one of the most important features of GP. In contrast
to neural networks, the clear transparent structure of
GP is able to provide such typical model characteris-
tics very efficiently. This unique power of GP-based
techniques can be utilised as a framework for global
data-based modelling. However, in the present context,
the results above clearly demonstrate that the HGEP
method is not able to find the exact model of a two-link
manipulator system. Thus, it is expected that it will
also not work for more complex multi-arm manipula-
tor systems.

9. Discussion

The results presented inSection 6can imply that it
is necessary for an accurate and precise model gen-
erated automatically from a given dataset to have a
fitness score that is the same as the original system
or the actual model, but it is not a sufficient condi-
tion to obtain an exact or a very close approximation
of the exact model. This can, otherwise, be stated as
that a given model derived from a desired dataset hav-
ing fitness same as the actual model may not always
replicate the actual system.

Thus, an inappropriately generated input–output
dataset used for model generation may yield a local
model whose fitness is the same as that of the actual
model. A local model provides a biased model of
the system as in the case of a two-link manipulator,

where in Case 1 (Section 6), the model promptly
achieves the desired highest level of fitness value.
In spite of the high value of the fitness, the model
is far from the correct one. This clarity of local and
global (actual) model always remains hidden in all
non-transparent modelling methods like neural net-
works. Thus, GP-based methods in general provide a
better picture of the system and help in understanding
the internal dynamics of the system.

Moreover, during the process of simulation of the
automatic generation of the dynamic models, the fol-
lowing important points have been experienced.

• During the learning process, the HGEP method
did not include all the designated inputs from the
terminal set into the model. Thus, the resultant
model becomes biased toward some particular lo-
cal structure of the system. It is quite obvious that
the input–output data collected for training always
pertains to some particular task. Hence, the model
from this dataset will always be biased towards
that task. Thus, in particular, it is quite difficult to
obtain a global system model.

• Global models are likely to be obtained from a
completely randomly generated input and output
set. However, a completely randomly generated
dataset with many input and output variables in-
creases the feasible search space enormously. Thus,
it is almost impossible to obtain any useful model
from a completely random input–output dataset
with many inputs. Due to this reason, for a sim-
ple system like a single-link manipulator where
the number of inputs are very few, the completely
random input–output dataset produced the exact
model. Whereas, when a two-link manipulator
system with many input variables was tested with
complete random input–output datasets, the fitness
score never exceeded 0.1 with finite population
size and learning time. This prohibits any possi-
bility of obtaining good models for a system with
many inputs from randomly generated input–output
datasets within a limited time with finite population
size. Due to this reason, natural sinusoidal type of
input variations were chosen to train the HGEP in
order to obtain the mathematical model.

• It has been shown that the HGEP method used for
data-based intelligent modelling is not capable of re-
producing the actual model for even a two-link, rigid
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manipulator system. However, it provides greater
insight into the internal structure of the problem,
compared to other data-based modelling methods,
thereby leading to a new dimension in the anal-
ysis of intelligent data-based modelling methods.
Hence, conventional mathematical models[24–26],
although requiring high mathematical skills, are the
only way to represent complex robotic manipulator
systems. Thus, it is suggested from the results de-
scribed in this paper that conventional mathematical
modelling methods are the only choice at present for
the simulation and control operations of complex,
non-linear manipulator systems until the develop-
ment of a highly efficient intelligent data-based al-
gorithm as an automatic model generator.

10. Conclusions

This paper has described a hybrid GP and EP
(HGEP) method for modelling the task. GP has been
used to find an optimal model structure and EP
evolves the ephemeral constants contained within a
particular GP model structure to make the underly-
ing GP model structure more robust. To speed up
the overall process of the model evolution, suitable
modifications to the basic EP technique have been
performed that use Cauchy distribution instead of the
usual normal distribution of BEP. Thus, this yield a
very fast EP method, named here as Cauchy-guided
EP method. In order to reduce the computational bur-
den, only one tree individual per generation has been
chosen to better exploit its underlying structure. Due
to the use of a single tree, the CGEP method deals
with only one row vector of numerical parameters of
the selected tree. Hence, a (1+λ) stochastic selection
strategy has been used for updating the numerical
parameters of the selected tree individual.

For complex problems, both crossover and muta-
tion operators were used to exploit the program search
space. The mutation operation used here consists of a
series of mutation operators forming a mutation set. A
Poisson variate has been used to select the number of
mutation operators to be used for the overall mutation
of the selected tree individual. Then, the best model of
each generation is picked up, and its ephemeral con-
stants are optimised for best performance. Then, the
worst tree in that generation is replaced by the CGEP

optimised tree. Thus, in each generation, the best tree
of GP coexists with its subsequent optimised suppos-
edly more fit tree.

It has been shown experimentally that, for complex
problems, it is always necessary to incorporate system
knowledge into the input–output dataset. For a robot
manipulator system, pre-processing of the input data
by means of the cosine and sine functions greatly im-
proves the overall performance. Hence, it is suggested
here that system knowledge should always be incorpo-
rated into the input–output dataset to reduce the pres-
sure on the optimisation method, thereby helping the
underlying method to yield better results.

It has also been emphasised that, for a proper model,
it is necessary for the fitness of the evolved model to
be same as the fitness of the actual model, but this is
not a sufficient condition to produce an exact system
model.

More importantly, it has been shown, whilst that
the HGEP method performed better than the conven-
tional tree-coded GP method on many simple model
generation tasks including a model for single-link
manipulator system, it could not generate the exact
forward dynamics model for a two-link manipulator
system.
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