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Parameter estimation of power system signals

using SVD

This paper presents an estimation technique for amplitude,
frequency, phase and damping of a signal embedded in noise.
This signal considered in this paper belongs to that of a
power system, where frequency deviations in the neighbour-
hood of the nominal value occur due to dynamic oscillations
or faults. The off-nominal frequency, amplitude and damp-
ing are estimated using a damped sinusoidal model, and a
Taylor series expansion technique around the nominal value.
Singular value decomposition (SVD) technique is used to
solve the set of over-determined and under-determined equa-
tions for the instantaneous data samples, and the relevant
computer simulation results are presented.

Introduction

he estimation of the signal parameters including the
I frequency, amplitude, phase and the degree of damp-
ing can be broadly classified into parametric and non-
parametric methods. The non-parametric methods make no
assumptions how the data were generated, and the cstimales
arc based cnlirely on a finite record of data. The data is
assumed to be cither zero outside the measurement interval,
or to be periodic. A finite record causcs spectral leakage and
poor frequency resolution, which can be alleviated by increas-
ing the record length. However, a large record length may
not be suitable for on-linc applications, especially when the
signal is non-stationary or transicnt. The parametric method
on the other hand assumes a model for the signal genera-
tion, and the paramcters of the model are estimated from the
obscrved data. The parametric methods give significantly
higher resolution, and do not suffer from lcakage effects duc
to frequency sampling (Doraiswami and Liu, 1990; Proakis
and Manolakis, 1988).

In power systems, il is cssential 1o maintain the recquency
of the system closc to its nominal value, usually, frequency
deviations in the range of two or three per cent are only
allowed for short durations of time. In this range, the least
square ¢rror algorithm provides accurate estimate of the
amplitude, frequency and phase of the signal, and thus, is
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the most suitable for off-nominal frequency estimation and
relaying using a microcomputer. Other methods to estimate
the frequency and degree of damping of signal are based on
Fourier Transformation (Lee and Poon, 1989), are extended
prony’s method (Wang ct al., 1988; Haucr, 1988). The eigen
value method is a parametric method and requires the knowl-
cdge of the system matrix representing the state variable
modecl of the power system, and hence,it is unsuitable for on-
line applications. The Fourier Transform which is a non-
parametric method, although suitable for on-line applications,
requires sufficicnuly large data record compared to the pe-
riod of the lowest frequency components, so that the leak-
age cffect is negligible and the frequency resolution high.

In this paper, the off-nominal frequency and amplitude
of a power system signal like the voltage or current is es-
timated using a wave form modelling technique. The param-
eters of a modelled wave form (assuming it to be a damped
sinusoid) arc estimated from the Wiener-Hopf equation which
is solved using singular valuc decomposition (SVD)
(Doraiswami and Jiang, 1989; Swain, 1991; Klcma ct al.,
1980) technique, SVD yiclds a numerically robust solution,
and is morc accurate in comparison to the least square al-
gorithm. The efficacy of the technique is tested by using
computer simulation for a power system signal, whose fre-
quency varies between 40 to 60 Hz range. Further the paper
explores the effect of sampling rate, magnitude of damping,
efc. by corrupting the signal with a white noise of varying
noise power.

Signal model

The general power system signal can be described as a
damped sinusoid, which can be modclled as

y (D = A c® sin 2rlt + @) N

where y(1) is the intantancous value of the signal, A is
the peak value of the signal, f is the frequency of the signal
which may be cither voltage or current, @ is the arbitrary
phasc angle, and o is the damping factor,

Equation (1) can be expanded in the neighbourhood of
the nominal frequency F_, by using Taylor series expansion,
which gives :
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where
X, =Acos &, x,= (Al A cos @, ‘
Xy = Asin &, x, = (Af) A sin &,
x5 = (AD? A cos @, x, = (AD)? A sin @,
X, =-0 Acos &, x; = -G Af cos @,
Xy =0 Asin @, x,,=-0 (Al) A sin @,
X, = -0 (Af)? A cos @, } @
X, = —0 (AD? A cos @,
X3 = —(6%20) A cos @,
X,y = —=(642.0) Af A cos @,
X5 = ~(06%/2.0) A sin @,
X, = —(6%2.0) Af A sin @,
X;; = —(0%2.0) (Af)? A cos @, J
X4 = —(6%2.0) (A% A cos @,
a, = sin (2nf 1), a,= 2nt cos (2nf), }
a; = cos (2nl}), a;=2ntsin (2nly),
ag= =2(nt) sin (2nf)1), a= —2(n1)?cos (2nf p), @
a,=tsin 2nf1), ag=2mcos (2nf ),
ag=1cos (2nf 1), a,=-2rt? sin (2nf ), }
ay = -2n3 sin @nfY), a;=-2n%c cos (2nf.1),
a,; =2 sin (2nlp), a,= —2m1® cos (2nf ),
a5 =t cos 2nl 1), ae= -2t sin (2nfy),
ay= -2rt* sin (2nfy), a,= ~2n%* sin (2nf ), J

Af=ff, ©)

If the signal is sampled at t,, t; + At and t, + 2At scc-
onds ctc., the left hand side of equation (3) gives the signal
values at the above intervals of time. Since time is an ar-
bitrary quantity, and t, can be assigned a value, the ‘a’
cocfficients of cquation (2) are known and the ‘x’ compo-
nents are unknown. Both damped and undamped signals are
considered in this paper. If damping is small, ¢ = 1.0, and
hence only six cquations will be adequate to determine the
unknown values of x’s. However, it is well known that an
over-determined set of equations is required to determine
the signal magnitude and frequency, as the signal model is
corrupted by white noise of variance, T and SNR of p
Equation (6) expresses m such equations in n unknown in
the matrix form as

[A] [x] = [y] (6
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where [y] is a sct of vector measurements of the instantane-
ous values of the signal, [x] is the vector of unknown from
which amplitude, frequency, phase and damping of the sig-
nal are estimated, and [A] is the cocfficient matrix whose
elements are known, For m>n or m<n, the vector X is ob-
tained by minimising the least squares cquation (Cadzow,
1984 and 1990)

Jw) = (Y - AX)T (Y - AX) w (D
where Y is the data matrix [y(0)y(1) .....y(m)]T.

The optimal tap weight vector is given by

AT Ax = ATY . (8)

The solution of the Wicner-Hopl equation is obtained
using SVD. SVD yields a numerically robust solution, and
its use is necessary since the matrix A is not likely 10 have
a full rank (Klema et al., 1980, Ezio and Kung, 1989; Strang,
1980). Therefore,

z o}.T
A=U[0 D]V . (9)

where U and V are of dimensions (m x m) and (n x n),
respectively, and of the form

U= [uj, Uy ey u )y and Vo= [V),V, e, V),

and X is an rxr matrix of the form (diag. [ A, Ay, ..., A])
such that &; > A, .. 2 A, and A, = .o = A, =0,
and r £ 1 = min (m, n) is the rank of the matrix A.

This culminates in an expression for the estimated weights
which minimizes the least squared error

r T
x=- Y A‘kvk“k Y
k=1

The factors that affect the suitability of technique are the
size of the data window, the sampling frequency, and the
truncation of the Taylor series expressions of the sine and
cosine terms. A considerable freedom in selecting these
parameters is considered in this paper to estimate the ampli-
tude, phase and frequency of a signal embedded in noise, and
the type of the signal considered belongs to power system. |

Once the x values are obtained by multiplying the weight-
ing factors with a sliding data window, the amplitude, fre-
quency and damping (Giray and Sachdev, 1989; Sachdev and
Giray, 1980) of the signal arc obtaincd as

[2 2
A =4/x) + x5

... (10)

.. (1)

Af=x2/xl=x4/x3=,fx5/xl=,}x6/x3

A=y 2 1=+ 1) . (12)

o= 5 S0l )/l 4xd) e (13)
X1 X2

and so on.
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Several such formulac can be desired for determining the
above parameters f, and o. Qut of these the first two formu-
lations for frequency deviation calculation is accurale because
the higher order terms amplify noise more than that of the
lower orders. In this paper, the frequency deviation is deter-
mined by averaging the first two formulations, and it is
obscrved that this results in accurate estimation for a wide
range of frequencies.

As the data samples are discrete, and the above combi-
nations are nothing but the use of non-recursive digital fil-
ters, certain error creep into the estimates of the above
quantities. The errors are much pronounced in a least square
error technique, where the pscudo-inverse of the matrix A
is used to solve the over-determined cquation. However, with
SVD the solution scems to be robust and more accurate.

The least mean square and average crror critcria used for
prediction of performance is as follows

N
J=(11N)Jzez(k)
k=0

and

N
mean =(1/N)Y (k)

k=0

.. (14)

... (15)

These two crileria are used to predict the value of the
frequency and the signal amplitude at a future time, and are
thus suitable for building intclligent sensors and an expert
system for heuristic asscssment of signal parameters.

Computer simulation

Computer simulation results are obtained from the simulated
data of a damped voltage wave form corrupted with white
noise. The damping magnitude and signal 1o noise ratio are
varied. The frequency of the voltage signal is taken as 50
Hz, and the nominal frequency is varied from 40 Hz to 60
Hz and vice-versa. The sampling rate is varied from 400 Hz
to 1600 Hz and filter order is cither 6 or 18. At first a
minimum data point of 6 is used for evaluating the ampli-
tude and frequency (damping is neglected). However, in the
final simulation the data points are varied to 38, and the
signal parameters are estimated. The signal to noise ratio is
varicd from 40 dB upto 0 dB. At 30 dB and 20 data points
the frequency estimate is excellent. At low SNR, together
with prior knowledge of system frequency, the actual
frequency is estimated by suitable initial nominal frequency.

Results and discussion

Fig. 2 compares the effcct of sampling frequencies on the
amplitude estimates of the signal. It is seen from this fig-
urc that as the sampling frequency increases from 400 Hz
0 800 Hz, the cstimated amplitude becomes more accurate
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in the frequency range of 40 Hz to 55 Hz, i.c., for a devia-
tion of +10 Hz from actual frequency valucs. However, if the
frequency becomes equal to 1600 Hz, the amplitude versus
frequency response is found to be oscillatory. Also the es-
timation of signal frequency is found to be better at 800 Hz
(16 samples per cycle) than either at 400 or 1600 Hz.

At higher value of data samples used for weight calcu-
lations, the amplitude estimate improves dramatically. How-
ever, the frequency error with different sampling frequency
and filter order is shown in Fig. 1. It is observed that at lesser
number of data points (i.e., 6) and with sampling frequency
fixed at 400 Hz, the frequency estimate is found to be ac-
curate from 45 to 55 Hz. Whereas, when the sampling fre-
quency increases to 800 Hz, the accuracy deteriorates to the
47.5 Hz to 52.5 Hz, i.c., the range of frequency deviation
of 5 Hz. With more data samples and increased sampling
frequency the frequency estimate is found o be better, but
with high sampling frequency and less number of data sam-
ples (near to the filter order) the frequency estimate is found
to be proper.

Further increasing the noise amplitudes, it is found that
morc number of data samples arc required for an accurate
estimate of signal amplitude and frequency. The same con-
cept is used o evaluate damping under high noisc condition,
i.e., low SNR.

Conclusion

The paper presents a simple approach for the estimate of
amplitude, frequency, phase and damping of a signal embed-
ded in noise. The frequency deviation from nominal value
usually occurs in a power system when faults and sudden load
changes cause dynamic oscillations of the system. The pa-
per highlights the effects of sampling frequency, data length,
damping magnitude and SNR on the band width of the
accurate frequency estimation near the nominal value, The
SVD technique is found to be robust and yiclds an accurate
cstimate of the signal parameters of the power sysicm sig-
nal. This paper presents a gencralised signal processing
technique which can be applicd to other signals as well.
Further, a comparison with linear predictive coding (LPC)
approach of identifying a signal being worked out in a future
paper. This technique is found to be a simple one and is being
applied for microcomputer based frequency monitoring in
power and communication systems. However, further re-
search work can be carried out to overcome the limitations
of the proposed scheme for low SNR and high damping
coefficients.
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