
Information Processing Letters 82 (2002) 55–63

Performance improvement of self-adaptive evolutionary
methods with a dynamic lower bound

Anjan Kumar Swain∗, Alan S. Morris
Department of Automatic Control and Systems Engineering, University of Sheffield, UK

Abstract

Recent research on self-adaptive evolutionary programming (EP) methods evidenced the problem of premature convergence.
Self-adaptive evolutionary programming methods converge prematurely because their object variables evolve more slowly than
do their strategy parameters, which subsequently leads to a stagnation of object variables at a non-optimum value. To address
this problem, a dynamic lower bound has been proposed, which is defined here as the differential step lower bound (DSLB)
on the strategy parameters. The DSLB on an object variable depends on its absolute distance from the corresponding object
variable of the best individual in the population pool. The performance of the self-adaptive EP algorithm with DSLB has been
verified over eight different test functions of varied complexities. 2001 Elsevier Science B.V. All rights reserved.

Keywords: Evolutionary computing algorithms; Self-adaptive evolutionary algorithms; Dynamic lower bound; Differential step lower bound;
Evolutionary programming

1. Introduction

Evolutionary computing (EC) algorithms broadly
cover three distinct areas: genetic algorithms (GAs)
[8,3], evolution strategies (ESs) [13], and evolutionary
programming (EP) [6,5]. The widely used genetic al-
gorithms model evolution on the basis of observed ge-
netic mechanisms, i.e., gene level modeling. Evolution
strategy algorithms model evolution of individuals to
better exploit their environment, and use a pure de-
terministic selection. Whereas, evolutionary program-
ming algorithms model evolutions of individuals of
multiple species competing for shared resources, and
essentially utilize a stochastic selection.

* Corresponding author. Currently in the Department of Electrical
Engineering, Indira Gandhi Institute of Technology, Sarang, India.

E-mail addresses: swainanjan@hotmail.com (A.K. Swain),
a.morris@sheffield.ac.uk (A.S. Morris).

All EC algorithms, in general terms, can be de-
scribed with the four operations of reproduction (r),
inheritance (i), variation (v), and selection (s). This
can be expounded as that the evolution will take place
as long as individuals generate copies of themselves
that inherit their parent characteristics with some de-
gree of variation (mutation, recombination, etc.) along
with a selection method that selects individuals to
survive and reproduce. This can simply be described
mathematically for a populationP consisting of indi-
vidualspi, ∀i ∈ {1, . . . ,µ}, which are subjected to a
series of operators such that

P(t + 1) = s
(
v(P (t))

)
, (1)

whereP(t) is a vector of individualspi with each
pi representing a vector of object variablespij : j ∈
{1, . . . , n0} at generation “t” under a particular rep-
resentation,v(·) is the random variation operator,

0020-0190/01/$ – see front matter 2001 Elsevier Science B.V. All rights reserved.
PII: S0020-0190(01)00290-3

56 A.K. Swain, A.S. Morris / Information Processing Letters 82 (2002) 55–63

and s(·) is the selection operator. Now, it can be
seen that all EC algorithms carry out reproduction
of individuals either by just copying the parent in-
dividuals or by using variation operators such as re-
combination, mutation etc. to allow inheritance with
variation. Usually, variation operators reproduce with
inheritance in addition to small variations. Hence,
reproduction and inheritance operators are not ex-
plicitly included in the above expression. The ac-
tion of variation operator on parent individuals gen-
erates offspring. Then, the selection operators(·)
operates on both offspring and/or parent individu-
als to determine which of the individuals will have
the opportunity to reproduce. This selection opera-
tor usually depends on the fitness or the quality of
the individuals determined by some predefined crite-
ria.

In EC methods, the parameters that control the evo-
lutionary search are defined asstrategy parameters.
Thus, mutation rates, mutation variances and recombi-
nation probabilities are classified as strategy parame-
ters. Adaptation of these strategy parameters is pre-
cisely calledparameter control, whereas setting the
strategy parameters before executing the EC algorithm
may be calledparameter tuning [4].

The parameter control can be classified intofixed/
deterministic, adaptive and self-adaptive parameter
control methods. In fixed parameter control, the strat-
egy parameters are updated by some deterministic
and fixed rule [11] without using any explicit feed-
back from the search. The adaptive parameter con-
trol method explicitly uses feedback information from
the search to update the strategy parameters during the
evolution process (e.g., Rechenberg’s 1/5 success rule
in [14]). Self-adaptive parameter control involves the
updating of strategy parameters by considering them
as a part of the evolution process, i.e., the strategy pa-
rameters are allowed to evolve along with the object
variables.

In recent years, there has been much effort to in-
crease the overall performance of EP on a variety
of problem domains. All the varieties of EP algo-
rithms use the basic self-adaptive EP algorithm, which
is also known as canonical EP (CEP), as the base-
line algorithm. The CEP method is described in Sec-
tion 2. The CEP method uses Gaussian mutation op-
erator to generate offspring. A Gaussian mutation op-
erator generates offspring by adding Gaussian random

variates to parent individuals. The major disadvantage
of self-adaptive evolutionary algorithms is the pre-
mature convergence of the solution due to the rapid
drop in the values of the strategy parameters com-
pared to the corresponding object variables to very
low values. Thus, it becomes practically ineffective
to progress any further evolution. This was first re-
ported by Liang et al. [9]. They observed that self-
adaptive evolutionary algorithms are not even able to
find a global optimum for simple functions. Then, they
suggested the use of a fixed lower bound on each of
the strategy parameters to improve the overall per-
formance of these algorithms. Subsequently, Liang
et al. [10] proposed a dynamic lower bound on strat-
egy parametersηij that resulted in performance im-
provement on some test functions. Due to the lack
of any concrete method to avoid the premature con-
vergence, researchers usually use a fixed lower bound
on the strategy parameters [2]. This method is known
as the CEP with fixed lower bound (CEPFLB). Re-
cently, Glickman and Sycara [7] presented three con-
ditions that may be the possible causes of the prema-
ture convergence of all self-adaptive evolutionary al-
gorithms. However, their experimentation and asser-
tions are mainly based on training recurrent artificial
neural networks (RANNs). In general, artificial neural
networks used for system modeling often generate lo-
cal models rather than global ones [16]. Hence, rela-
tively large numbers of standard global optimization
problems should be used for any general conclusion
on global optimization methods.

In this paper, a dynamic lower bound onηij has
been proposed, which depends on the distance be-
tween thej th object variable of theith individual and
the corresponding object variable of the fittest individ-
ual in the population pool. This is based on the con-
cept that a particular object variable can search ef-
fectively only if the search domain around that indi-
vidual is comparable with it. This resulted in a very
effective method whose efficacy has been tested on
eight test functions of various complexities. The pro-
posed method has been named as CEP with differ-
ential step lower bound (CEPDSLB). The conver-
gence results of the CEP, CEPFLB, and CEPDSLB
are compared, and also necessary statistical tests have
been performed to compare their statistical signifi-
cance.

A.K. Swain, A.S. Morris / Information Processing Letters 82 (2002) 55–63 57

2. Self-adaptive evolutionary programming

Self-adaptive evolutionary programming (EP) algo-
rithms have been used extensively in recent years for
global numerical optimization problems [5,12]. The
well-established self-adaptive EP methods work by
evolving simultaneously all the object variables and
their corresponding strategy parameters. A particular
set of strategy parameters associated with an individ-
ual survives only when it produces better object vari-
ables. The most common variant of self-adaptive EP
is the canonical self-adaptive EP (CEP) where these
methods modify the individual representation by in-
corporating strategy parameters into them. Thus, the
ith individualpi in a population poolP = [pi], ∀i ∈
{1, . . . ,µ} can now be redefined as:

pi = {
(pij , ηij) | i = 1, . . . ,µ; j = 1, . . . , n

}
, (2)

wheren is the number of object variables and also
the number of standard deviations;ηij is the standard
deviation or the strategy parameter associated with
the j th object variable of theith individual;µ is the
number of individuals in the population pool. Then,
the strategy parametersηik and the corresponding
object variablepij can be updated as per the following
equations:

ηij (t + 1) = ηij (t)exp
(
τNij (0,1) + τ ′Ni(0,1)

)
, (3)

pij (t + 1) = pij (t) + ηij (t + 1)Nij (0,1), (4)

whereηij and pij are thej th component of theith
strategy parameter vector andj th object variable of
theith individual, respectively;Ni(0,1) andNij (0,1)

are one-dimensional Gaussian random variates with
expectation zero and standard deviation one; and the
exogenous parametersτ andτ ′ are set to(

√
2n)−1 and

(
√

2
√

n)−1, respectively [1]. Here,Ni(0,1) serves
as a global factor allowing an overall change of
the mutability in an individual-level andNij (0,1)

represents a local factor, thus allowing adjustment
of each component of the individual acting at a
component-level.

3. Differential step lower bound (DSLB)

It is evident from the previous discussions that the
value of ηij largely depends on the object variable
pij from its global optimum. Unfortunately, the global

optimum of a system is usually not known in ad-
vance. Hence, to deal with this problem, the con-
cept of pseudoglobal optimum has been used [15].
A pseudoglobal optimum in a particular population
pool is defined as the fittest individual in that pool.
Hence, the lower bound onηij corresponding to the
object variablepij is proposed to vary in proportion to
its distance from thej th object variable of the fittest
individual in that population pool. In this way, the
distance information is incorporated into the adapta-
tion equations of strategy parameters. In addition, this
lower bound is active at the component level of an in-
dividual. This serves the purpose of not allowingηij

to fall below its distance from the pseudoglobal opti-
mum. The operation of this lower bound can be ex-
plained as that whenηij is very small but the corre-
spondingpij is far from the true global optimum, then
the lower bound is dominant, and hence controls the
convergence.

Now, mathematically DSLB can be represented as

bij ∝ |pij − pkj |. (5)

The basic philosophy of real number mutation works
with the concept that small variations are more likely
to occur than large variations because a Gaussian
random distribution is utilized. By extending this
concept tobij , we have

bij = γ |pij − pkj |Nj (0,1), (6)

where Nj(0,1) is a normal distribution with zero
mean and unity standard deviation, andγ = 1/

√
n

is the proportionality constant for CEP. The factorγ

is system dependent, i.e., it is very unlikely that this
factor will remain same for all other variants of CEP.

It can be seen that, when the object variables are
situated far from the pseudoglobal optimum and the
initial search domain is very large, then the probability
of bij being large is greater. Hence, this makes
the strategy parameters to be larger than the initial
ηij values. This can be avoided with the following
heuristics:

ηij (k + 1) =
{

ηij + bij , ηij + bij < (ηij)initial,

ηij , otherwise.
(7)

With the progress in the evolution, the strategy
parameterηij reduces to a low value. Hence, at the
start of the evolution process, the mutation is very
large and the main effect is to explore the search space.

58 A.K. Swain, A.S. Morris / Information Processing Letters 82 (2002) 55–63

Then, at later generations, the search domain narrows
down and so it is more likely to exploit the search
space. This concept of varying the strategy parameter
to avoid the premature convergence leads to a novel
dynamically varying lower bound. This dynamic lower
bound is defined here as the differential step lower
bound (DSLB).

4. Simulation method and results

For the experimental verification of the performance
of the algorithms to find the global minimum, a large
set of 23 benchmark functions, which are the same as
those originally considered by Yao et al. [17], have
been used. This large set of functions ensures that the
algorithms used for verification are not biased towards
a particular class of problems. These functions can be
grouped as follows:
(i) Functionsf1 to f13 are high-dimensional prob-

lems. Out of these, the functionsf1 to f7 are uni-
modal, andf8 to f13 are multimodal functions
with many local minima. The number of these lo-
cal minima increases with the dimension of the
problem. Further, functionf6 is a discontinuous
unimodal step function andf7 is a unimodal noisy
quartic function with an additive uniform random
number in the range 0 to 1.

(ii) Functions f14 to f23 are all low-dimensional.
Further, these are all multimodal functions with
few local minima.

All the 23 benchmark functions are given in Table 1.
All the experiments on the CEP and FEP method

have been performed under exactly the same condi-
tions with initial standard deviationηij = 3, ∀i ∈ {1,

. . . ,µ} and∀j ∈ {1, . . . , n}, and the same initial pop-
ulation sizeµ = 100. For the CEPFLB method, the
fixed lower bound is taken as 10−4. The simulation re-
sults for all the 23 benchmark functions are shown in
Table 2. This table shows the average best and average
mean results for all the benchmark functions. Average
best and average mean indicate the average of the best
scores and the mean scores of all the individuals in a
population pool after the indicated number of gener-
ations, over 50 runs for all the functions. In addition
to this, the standard deviations of the best and mean
scores of all the benchmark functions have also been
indicated inside the brackets in Table 2. The standard

deviation of the 50 best and mean results obtained after
the specified number of generations depict the distrib-
ution of the best and mean results around their respec-
tive means. This essentially shows the consistency of
the results over 50 runs. In general, lower values of the
standard deviation signify better consistency of the ob-
tained results. In most of the test cases, the CEPDSLB
exhibited statistically consistent results.

Also, in Table 2, the statisticalt-test results with
49 degrees of freedom are presented along with the
significance values. Thet-test is performed to test the
statistical significance of the results obtained for the
three different methods. The negativet-scores indicate
the improved performance of the first of the two
methods under test, whereas positivet-scores indicate
the superior performance of the second method.

Fig. 1 shows the progress of the average best values
of the population by CEP over 50 runs for the uni-
modal functionsf1, f2, f5 andf7. It can be observed
that, on all the functions, CEP with differential step
lower bound (CEPDSLB) performs consistently better
than CEP with no lower bound (CEPNLB) and CEP
with fixed lower bound (CEPFLB). For functionsf2,
f5 andf7, the results of CEPDSLB and CEPFLB are
comparable. This shows that a fixed lower bound of
10−4 serves adequately on these functions. The results
for functionsf4 andf6 not shown here of the CEPFLB
is almost identical with that of CEPNLB, whereas the
CEPDSLB outperforms CEPFLB. This indicates that
CEPFLB does not yield better results on all the func-
tions.

The performance of CEPNLB, CEPFLB, and
CEPDSLB for high-dimensional multimodal func-
tions with many local minima are shown in Fig. 2 for
f8 and f11. Here, the performance of CEPFLB and
CEPNLB do not differ at all for functionsf8 to f10.
Whereas, on functionsf11 to f13, the CEPFLB ex-
hibits some improvements over CEPNLB. However,
on all the functionsf8 to f13, CEPDSLB outperforms
CEPFLB and CEPNLB.

On the low-dimensional functionsf14 to f23, the
performance of all the methods are very similar.
However, as shown in Table 2, onf14, f22 and f23,
the performance of CEPDSLB is impressively better
than CEPFLB and CEPNLB. This is also shown in
Fig. 3 for f14 and f23. On functionsf19 and f20,
the convergence of CEPDSLB is faster than both
CEPNLB and CEPFLB. This is shown in Fig. 4.

A.K. Swain, A.S. Morris / Information Processing Letters 82 (2002) 55–63 59

Table 1
The 23 benchmark functions, wheren0 is the function dimension,fmin is the minimum function value and SD is the user supplied search
domain

Test functions n0 SD fmin

f1(x) = ∑n
i=1 x2

i
30 [−100,100]n0 0

f2(x) = ∑n
i=1 |xi | +

∏n
i=1 |xi | 30 [−10,10]n0 0

f3 = ∑n
i=1(

∑i
j=1 xj)2 30 [−100,100]n0 0

f4(x) = maxi {|xi |,1 � i � n} 30 [−100,100]n0 0

f5(x) = ∑n−1
i=1 {100(xi+1 − x2

i
)2 + (xi − 1)2} 30 [−30,30]n0 0

f6(x) = ∑n
i=1([xi + 0.5])2 30 [−100,100]n0 0

f7(x) = ∑n
i=1 ix4

i + random(0,1) 30 [−1.28,1.28]n0 0

f8(x) = ∑n
i=1 −xi sin(

√|xi |) 30 [−500,500]n0 0

f9 = ∑n
i=1{x2

i − 10cos(2πxi) + 10} 30 [−5.12,5.12]n0 0

f10(x) = −20exp(−0.2
√

(1/n)
∑n

i=1 x2
i
) 30 [−32,32]n0 0

− exp((1/n)
∑n

i=1 cos(2πxi)) + 20+ exp(1)

f11 = 0.00025
∑n

i=1 x2
i

− ∏n
i=1 cos(xi/

√
i) + 1 30 [−600,600]n0 0

f12(x) = (π/n){10sin2(πy1) + ∑n−1
i=1 (yi − 1)2[1+ 10sin2(πyi+1)] + (yn − 1)2} 30 [−50,50]n0 0

+ ∑n
i=1 u(xi ,10,100,4), yi = 1+ 0.25(xi + 1)

u(xi, a, k,m) = k(xi − a)m, xi > a; 0,−a � xi � a; k(−xi − a)m, xi < a

f13(x) = 0.1{sin2(3πx1) + ∑n−1
i=1 (xi − 1)2[1+ sin2(3πxi+1)] 30 [−50,50]n0 0

+ (xn − 1)2 + [1+ sin2(2πxn)]} + ∑n
i=1 u(xi,5,100,4)

f14(x) = [0.002+ ∑25
j=1(j + ∑n

i=1(xi − aij)6)−1]−1 2 [−65.536,65.536]n0 −0.980004

f15(x) = ∑11
i=1[ai − x1(b2

i + bix2)(b2
i + bix3 + x4)−1]2 4 [−5,5]n0 0.0003075

f16(x) = 4x2
1 − 2.1x4

1 + (1/3)x6
1 + x1x2 − 4x2

2 + 4x4
2 2 [−5,5]n0 −1.0316285

f17(x) = (x2 − (5.1/(4π2))x2
1 + (5/π)x1 − 6)2 + 10(1− (1/8π))cosx1 + 10 2 [−5,10]n0 [0,15]n0 0.398

f18(x) = �1+ (x1 + x2 + 1)2(19− 14x1 + 3x2
1 − 14x2 + 6x1x2 + 3x2

2)� 2 [−2,2]n0 3.0

× �30+ (2x1 − 3x2)2(18− 32x1 + 12x2
1 + 48x2 − 36x1x2 + 27x2

2)�

f19(x) = −∑4
i=1 ci exp�−∑3

j=1 aij (xj − pij)2� 3 [0,1]n0 −3.86

f20(x) = −∑4
i=1 ci exp�−∑6

j=1 aij (xj − pij)2� 6 [0,1]n0 −3.32

f21(x) = −∑5
i=1[(x − ai)(x − ai)

T + ci]−1 4 [−10,10]n0 −10

f22(x) = −∑5
i=1[(x − ai)(x − ai)

T + ci]−1 4 [−10,10]n0 −10

f23(x) = −∑10
i=1[(x − ai)(x − ai)

T + ci]−1 4 [−10,10]n0 −10

60 A.K. Swain, A.S. Morris / Information Processing Letters 82 (2002) 55–63

Table 2
Performance comparison of self-adaptive methods on functionsf1−f23 with no lower bound, fixed lower bound and dynamic lower bound.
Results are averaged over 50 runs and indicate the value at the end of the mentioned generations. Thet-test results with 49 degrees of freedom
between two methods (NLB-DSLB/FLB-DSLB) favors the second method (DSLB) if is positive and vice versa. The numbers in the brackets
with mean best and mean average indicate the standard deviation, and that witht-test indicates the significance factor. Here, NLB, DSLB, and
FLB stand for no lower bound, differential step lower bound, and fixed lower bound, respectively

fn No. gene. NLB FLB DSLB t-test results

Mean best Mean average Mean best Mean average Mean best Mean average NLB-DSLB FLB-DSLB
f1 1500 2.380e02 2.387e02 5.745e−02 6.653e−02 2.524e−06 3.360e−06 4.0879 3.13844

(411.651) (411.381) (1.29e−01) (1.45e−01) (2.95e−04) (2.95e−04) (1.61e−04) (2.87e−03)
f2 2000 8.013e00 8.014e00 2.575e−03 3.421e−03 5.901e−05 5.941e−05 7.00179 42.1379

(8.09239) (8.09262) (2.32e−04) (2.04e−04) (3.29e−04) (3.29e−04) (6.59e−09) (3.73e−40)
f3 5000 2.998e03 2.998e03 4.227 4.310 1.586 1.587 11.4898 1.54641

(1843.86) (1843.89) (8.04) (8.15) (8.56) (8.56) (1.64e−15) (0.12844)
f4 5000 2.866e00 2.875e00 1.636e00 1.645 1.050e−02 1.072e−02 12.4887 9.97549

(1.61869) (1.62454) (1.15e00) (1.16) (1.06e−02) (1.07e−02) (7.67e−17) (2.18e−13)
f5 20 000 8.014e04 8.014e04 1.025e01 1.026e01 2.674e00 2.679e00 1.707720 1.83458

(331810) (331810) (28.4028) (28.4156) (4.2328) (4.23768) (9.40e−02) (7.26e−02)
f6 1500 1.915e03 1.915e03 1.549e03 1.549e03 1.223e02 1.223e02 7.22823 6.57706

(1839.23) (1839.23) (1.52e03) (1.52e03) (3.84e02) (3.84e02) (2.94e−09) (3.00e−08)
f7 3000 2.230e01 6.909e01 8.774e−01 9.636e−01 2.482e−01 3.211e−01 4.60388 1.29758

(33.7182) (187.69) (3.18) (3.28) (1.23855) (1.23999) (2.97e−05) (0.20051)
f8 9000 −7894.610 −7894.610 −7965.082 −7965.082 −9330.650 −9330.650 11.68 10.1247

(601.779) (601.779) (702.89) (702.89) (682.442) (682.442) (9.08e−16) (1.33e−13)
f9 5000 1.096e02 1.096e02 1.065e02 1.065e02 6.195e01 6.195e01 10.261 9.99864

(25.1061) (25.1061) (2.62e01) (2.62e01) (1.57e01) (1.57e01) (8.50e−14) (2.02e−13)
f10 1500 9.212 9.212 9.675 9.675 1.543 1.543 16.6964 17.6761

(2.83466) (2.83476) (2.36) (2.36) (1.8783) (1.87829) (7.36e−22) (6.65e−23)
f11 2000 9.227e00 9.230e00 8.350e−01 8.356e−01 1.061e−01 1.061e−01 4.98405 1.70412

(12.9783) (12.9776) (3.01e01) (3.01e01) (2.22e−01) (2.22e−01) (8.17e−06) (9.47e−02)
f12 1500 5.976 5.977 2.545 2.571 2.159e−01 2.159e−01 8.79628 7.08787

(4.63038) (4.62998) (2.22) (2.23) (3.65e−01) (3.65e−01) (1.19e−11) (4.85e−09)
f13 1500 3.545e04 3.765e04 4.670 4.746 1.349e−01 1.350e−01 1.014 6.5483

(247189) (262107) (4.94) (4.99) (5.24e−01) (5.24e−01) (0.31556) (3.32e−08)
f14 100 1.820683 2.146929 1.857361 2.057721 1.256056 1.256057 3.08269 2.94697

(1.22191) (1.69498) (1.43) (1.66) (6.28e−01) (6.28e−01) (3.36e−03) (4.90e−03)
f15 4000 9.501e−04 9.502e−04 8.319e−04 8.317e−04 8.753e−04 8.756e−04 1.61831 −0.927863

(1.78e−04) (1.78e−04) (2.33e−04) (2.32e−04) (2.65e−04) (2.65e−04) (0.11202) (0.35803)
f16 100 −1.031628 −1.031628 −1.031628 −1.031628 −1.031626 −1.031001 −1.00000 −1.00000

(4.49e−16) (4.49e−16) (4.49e−16) (4.49e−16) (1.51e−05) (4.43e−03) (0.32222) (0.32222)
f17 100 0.3978874 0.3978874 0.3978874 0.3978874 0.3978874 0.3978874 0.000000 0.000000

(2.24e−16) (2.24e−16) (2.24e−16) (2.24e−16) (2.24e−16) (2.83e−08) (1.00000) (1.00000)
f18 100 3.000000 3.000000 3.000000 3.000000 3.000000 3.000000 0.000000 0.000000

(0.00000) (0.00000) (0.00000) (1.35e−15) (0.00000) (0.00000) (1.00000) (1.00000)
f19 100 −3.862782 −3.862780 −3.862749 −3.862633 −3.862782 −3.862782 1.000000 1.00122

(2.83e−07) (6.29e−06) (2.36e−04) (1.05e−03) (1.79e−15) (7.82e−07) (0.32222) (0.32164)
f20 200 −3.202121 −3.201037 −3.226785 −3.220138 −3.236390 −3.236380 1.17849 0.480055

(0.20405) (0.20425) (1.36e−01) (1.79e−01) (5.39e−02) (5.39e−02) (0.24429) (0.63332)
f21 100 −7.192846 −7.183604 −8.016078 −7.891391 −8.146606 −7.928017 1.45843 0.204098

(3.34144) (3.33373) (2.87) (3.01) (3.00) (3.20) (0.15110) (0.83912)
f22 100 −8.830418 −8.611691 −8.672426 −8.588784 −9.598160 −9.574040 1.47861 1.86155

(2.88593) (3.08769) (2.87) (2.97) (2.23) (2.28) (0.14565) (6.87e−02)
f23 100 −8.99050 −8.690520 −8.760382 −8.694442 −10.22436 −10.18778 3.07897 2.91731

(3.00038) (3.16862) (3.07) (3.17) (1.43) (1.47) (3.40e−03) (5.32e−03)

A.K. Swain, A.S. Morris / Information Processing Letters 82 (2002) 55–63 61

Fig. 1. Average best results averaged over 50 runs of CEPDSLB, CEPFLB and CEPNLB on unimodal functionsf1, f2, f5 andf7.

Fig. 2. Average best results averaged over 50 runs of CEPDSLB, CEPFLB and CEPNLB on multimodal functionsf8 andf11.

62 A.K. Swain, A.S. Morris / Information Processing Letters 82 (2002) 55–63

Fig. 3. Average best results averaged over 50 runs of CEPDSLB, CEPFLB and CEPNLB on multimodal functionsf14 andf23.

Fig. 4. Average best results averaged over 50 runs of CEPDSLB, CEPFLB and CEPNLB on multimodal functionsf19 to f20.

5. Conclusions

In this paper, a novel dynamic lower bound on the
self-adaptive EP has been proposed for the function
optimization task. The power and effectiveness of the
proposed scheme have been shown by simulating the
results on eight well investigated and most typical test
functions. Then, the results are compared with that of
the results obtained from CEP and CEPFLB. In all
the cases, the EP with lower bound converges to a
region very close to the global optimum faster than its
conventional counterparts. Thus, this algorithm proves
to be faster, accurate and robust. This concept has
also been tested on the fast evolutionary programming

(FEP) method as proposed in [17], and the results with
lower bound were consistently better than that without
lower bound.

Acknowledgement

Authors thank the reviewers for their constructive
comments to improve the quality of the paper.

References

[1] T. Bäck, H.-P. Schwefel, An overview of evolutionary algo-
rithms for parameter optimization, Evolutionary Comput. 1 (1)
(1993) 1–23.

A.K. Swain, A.S. Morris / Information Processing Letters 82 (2002) 55–63 63

[2] K. Chellapilla, Combining mutation operators in evolutionary
programming, IEEE Trans. Evolutionary Comput. 2 (3) (1998)
91–96.

[3] L. Davis (Ed.), Handbook of Genetic Algorithms, Van Nos-
trand Reinhold, New York, 1991.

[4] Á.E. Eiben, R. Hinterding, Z. Michalewicz, Parameter control
in evolutionary algorithms, IEEE Trans. Evolutionary Com-
put. 3 (2) (1999) 124–141.

[5] D.B. Fogel, Evolutionary Computation: Towards a New Phi-
losophy of Machine Intelligence, IEEE Press, New York, 1995.

[6] L.J. Fogel, A.J. Owens, M.J. Walsh, Artificial Intelligence
through Simulated Evolution, John Wiley, New York, 1966.

[7] M.R. Glickman, K. Sycara, Reasons for premature conver-
gence of self-adapting mutation rates, in: Proc. Congress on
Evolutionary Computation (CEC2000), San Diego, CA, 2000,
pp. 62–69.

[8] D.E. Goldberg, Genetic Algorithms in Search, Optimization
and Machine Learning, Addison-Wesley Publishing, Reading,
MA, 1988.

[9] K.-H. Liang, X. Yao, C. Newton, D. Hoffman, An experimen-
tal investigation of self-adaptation in evolutionary program-
ming, in: Proc. 7th Internat. Conf. Evolutionary Programming,
Springer, Berlin, 1998, pp. 291–300.

[10] K.-H. Liang, X. Yao, C. Newton, Dynamic control of adaptive
parameters in evolutionary programming, in: Proc. Simulated
Evolution and Learning (SEAL98): Second Asia Pacific Con-
ference, Springer, Berlin, 1998, pp. 42–49.

[11] Z. Michalewicz, Genetic Algorithms+ Data Structure=
Evolution Programs, Springer, New York, 1994.

[12] N. Sarvanan, D.B. Fogel, K.M. Nelson, A comparison of meth-
ods for self-adaptation in evolutionary algorithms, BioSys-
tems 36 (1995) 157–166.

[13] H.P. Schwefel, Numerical Optimization of Computing Mod-
els, John Wiley, Chichester, UK, 1981.

[14] H.-P. Schwefel, Evolution and Optimum Seeking, Wiley, New
York, 1995.

[15] A.K. Swain, A.S. Morris, A novel hybrid evolutionary
programming method for function optimization, in: Proc.
Congress on Evolutionary Computation (CEC2000), San
Diego, CA, 2000, pp. 1369–1376.

[16] A.K. Swain, Dynamic modelling and control of robotic ma-
nipulators with an investigation of evolutionary computation
methods, PhD dissertation, University of Sheffield, UK, 2001.

[17] X. Yao, Y. Liu, G. Lin, Evolutionary programming made
faster, IEEE Trans. Evolutionary Comput. 3 (2) (1999) 82–
102.

