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This paper addresses the problem of formulation of a unified dynamic model for sundry
robotic manipulator systems derived from the first principle of mechanics instead of the
existing formulation based on linear separability principle. It provides a systematic deri-
vation, evaluation and subsequent conceptual interpretation of manipulator dynamics
model. Further, it analyzes the generality of the unified model over a wide range of ma-
nipulator configurations. In addition, it describes the implementation aspects of the uni-
fied model. © 2003 Wiley Periodicals, Inc.

1. INTRODUCTION

Dynamics modeling serves as an essential compo-
nent to study structure analysis, control algorithm de-
velopment and system motion simulation for robot
manipulators. The importance of manipulator dy-
namics modeling has been well covered by robotics
researchers. Various applications of robotic manipu-
lator systems show that a similar manipulator struc-

ture can be used in different applications with the
subjugation of stringent environment constraints.
These manipulators can be a combination of rigid and
flexible links and joints. In addition, the manipulator
base can be rigidly fixed on the earth or completely
free (space manipulators) or flexible or partially mo-
tion constrained as in mobile robots on fixed surface.
Further, multiple manipulators can work co-
operatively or independently amidst obstacles or
without obstacles. Also, one of the important issues is
the type of joint. A joint can have zero degrees of free-*To whom all correspondence should be addressed.
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dom (rigid contacts) or at best six degrees of freedom
(completely free, i.e., physically not connected with
any other bodies).1–3 Deriving a unified dynamic
model taking into consideration all these aspects may
be a formidable task although not impossible. Fur-
ther, it can be seen that the two extreme cases of base
mobility are an immovable base with zero degrees of
freedom and a completely free base with six degrees
of freedom (space manipulators). A flexible base is
very similar to a free-floating base with the exception
that the free-floating base is a floating inertia whereas
a flexible base may be either a flexible beam or a
spring and damper (visco-elastic) system.4 That
means that an additional base force is needed to de-
flect the base in the case of a flexible base manipulator
system. In addition, a mobile base can be modeled as
a partially constrained system with degrees of free-
dom less than six.5 Apart from this, a floating base can
serve as a fixed (immovable) base when its mass and
inertia are both infinite. Hence, a floating base with
external forces can be considered as a basis for mod-
eling any type of base.

Although, an extensive amount of research has
been carried out on the kinematics and dynamics of
terrestrial and space based single and multi-arm,
fully-actuated and underactuated, rigid and flexible
link, base and joint-based manipulator systems, the
importance of developing a unified kinematics and
dynamics model is not established. Keeping in view
the generality of a complete free base that represents
a space robot, all the discussion in this paper is con-
centrated on multi-arm rigid link space manipulator
systems. The dynamics of a space manipulator sys-
tem with completely free base is much more complex
than that of its fixed base counterpart. To cope with
the space manipulators, without loss of generality,
the gravity term has been assumed to be zero, which
in turn yields simple and lucid dynamic equations.
The gravity terms can be very easily incorporated to
the manipulator dynamics6 whenever it is needed.
Further, a space manipulator system with base free is
nothing but an underactuated manipulator system.
Therefore, the analysis presented here can very easily
incorporate the underactuated systems such as
flexible-base, flexible-arm and free-joint manipulator
systems.4 Further, incorporation of multiple arms
working cooperatively to handle an object mounted
on a free base can possibly be treated as a generalized
manipulator system. Then, the problem of dynamics
modeling of such cooperating multi-arm manipula-
tor system can precisely be stated as below.

Problem Statement: Formulate a dynamic model
for a multi-arm rigid link co-operative manipulator

system mounted on a completely free base in the
presence of external forces such that the model will be
representative of sundry manipulator configurations
subject to the following assumptions:

• Completely free base represents all varieties of
possible bases starting from fixed to free and
rigid to flexible.

• Variables of free base represent all possible pas-
sive joints in the system (which covers all
under-actuated systems).

• There is rigid contact between the end-effector
and the object in a multi-manipulator system
co-operatively handling a common object.

• No collision when multiple manipulators
working independent of each other.

• No obstacles in the environment.
• Effects of gravity are neglected.
Yoshida and Nenchev4 presented a unified model

based on the concepts originally proposed by Jain
and Rodriguez.7 Yoshida and Nenchev’s model is
based on the concept of decomposition of any ma-
nipulator system into one active and one passive ma-
nipulator system. Then, the respective independent
behaviors were superimposed to represent back the
complete system. This model is described in Appen-
dix A. However, in this paper the unified model will
be derived from the basic principles of mechanics of
manipulation. Then, it will be shown that the inher-
ent assumption of linear separability of an underac-
tuated system into its active and passive subsystems
to formulate the model may not represent the true
model of the original manipulator system. In addi-
tion, this paper deals explicitly with the calculation of
velocity and acceleration of each of the links and base,
and torques acting on each of the joints with the
knowledge of the forces acting at the end-effector ter-
minals.

In Section 2, a vivid description of the entire ma-
nipulator system is presented. Subsequently, in Sec-
tion 3, the basic spatial operators used in this work to
derive all mathematical representations are dis-
cussed. The spatial operator algebra (SOA) is selected
to represent manipulator kinematics and dynamics as
it provides an in-depth physical insight into the high-
level analytical manipulator motion expressions by
representing those with easily manipulable form.
Further, the unified dynamic model formulation uti-
lizes standard Newton–Euler equations of motion,
due to its obvious advantages.8,9 Both kinematics and
dynamics of a space manipulator system heavily de-
pend on the mass and inertia of the common base and
the rest of the system. The complexity of the interac-
tions between the motion of the free-base and the rest
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of the system has been systematically studied in Sec-
tions 4 and 5. Explicit mathematical relationships
among them have been presented.

A clear understanding of the mathematical rep-
resentations of a complex system is only possible by
proper physical interpretation of the mathematical
terms or expressions. Section 6 deals with this issue
by providing a physical interpretation of the equation
of motion of the whole manipulator system.

Forward dynamics analysis is important for
simulating a system. This requires the determination
of the system acceleration that results from given cur-
rent states of the system, and joint and base forces/
torques. Then, this acceleration is integrated to calcu-
late the next joint/base positions and velocities. This
issue is discussed in Section 7.

In essence, the unified dynamic model derived
here with reference to a space manipulator system,
incorporates systems containing any number of ma-
nipulators with any number of rigid links connected
by any type of joints and subject to known external
forces. Thus, the model obtained is a completely gen-
eralized model for any manipulator system. The gen-
erality of the derived model has been shown explic-
itly in Section 8 by presenting the particular cases of
this model to represent any underactuated manipu-

lator system. Then, the computer implementation of
the system of equations is discussed in Section 9. Sub-
sequently, Section 10 discusses the importance of the
derived model for sundry manipulator configura-
tions. Finally, a conclusion of the works presented in
this paper is drawn in Section 11.

2. MANIPULATOR SYSTEM DESCRIPTION

The general model of a multi-arm co-ordinating
space manipulator system with m-robots handling a
common object, which are then mounted on a com-
pletely free base, is shown in Figure 1. Each robot con-
sists of n rigid bodies known as links. Each adjacent
link is connected by means of a joint with multiple
degrees of freedom. The ith joint of the jth manipu-
lator connects the (i-l)th and ith rigid bodies together
with degrees of freedom idj , where 0, idj,6. Then,
0dj5db is the degrees of freedom of the base body; in
other words, the zeroth joint connects the base body
to the world reference frame widely known as inertial
frame. Hence, the common base for the manipulators
serves as the zeroth link of the entire system, and
other links are numbered in increasing order from
base to the end-effector. For a space manipulator sys-

Figure 1. A multi-arm co-ordinating space robotic system.
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tem, the base is mobile with complete motion free-
dom, where the attitude can rotate about three axes as
well as translate along spatial x, y and z axes, can be
modeled as a six degree of freedom joint, i.e., db
56. Whereas, for a terrestrial mobile manipulator
system, this joint can be modeled as a partially con-
strained system with less than six degrees of freedom.
This has been shown in Ziauddin,5 where he has
modeled a mobile two-arm co-operative manipulator
system with three degrees of freedom joint between
the base and inertial frame. Similarly, for a fixed base
terrestrial robot db50. In general, the degrees of free-
dom of the entire manipulator system can be repre-
sented as

dt5db1(
j51

m

dj5db1dm ,

where dj5( i51
n11dj is the degrees of freedom of the jth

manipulator, and dm is the total degrees of freedom of
all the manipulators.

Without loss of generality, we have assumed that
only one external spatial force fb is applied to the
moving platform of the system. In the absence of any
external force, the momentum of the whole system
can be treated as a constant. In space operation, often
to conserve energy, the spacecraft thruster is closed
once the robotic system acquires the required posi-
tion. This type of system is called free-floating.10 On
the other hand, in the case of a free-flying manipulator
system, both the spacecraft and manipulators are
controlled simultaneously. Now, for the free-flying
robotic systems, the spacecraft thruster force required
to control its position and attitude can be equiva-
lently modeled as external force acting on the plat-
form. Hence, in the case of a free-floating space ro-
botic system, this external force can be assumed to be
zero. Further, this concept of base external force can
be extended for flexible base manipulator systems
(FBMSs).11,12 In FBMS, the base force is modeled as
the sum of the damping and spring forces.

A space manipulator system possesses base-
invariance symmetry,13 which states that any of its
constituent rigid bodies (links or spacecraft) can be
chosen as a base body or prime body (PB).14 In that pa-
per, Saha showed that the end-effector serving as a PB
results in computationally efficient kinematic equa-
tions if the end-effector motion is the only concern,
otherwise it is essential to choose the moving plat-
form or the base as the PB. As this research work is
concerned with the development of a unified kine-

matic and dynamic model for various manipulator
systems, it is necessary to choose the base as the PB.

3. SPATIAL NOTATION

In the last decade, the notion of spatial force, accel-
eration and inertia15,16 have been studied extensively
for robot manipulator system representation.
Rodriguez17 extended these concepts to formulate
different operators that are used to solve manipulator
modeling and control problems. These spatial opera-
tors are commonly known as spatial operator algebra
(SOA). Later this concept was expounded and used
extensively by Rodriguez et al.,18 and Rodriguez and
Kreutz.19 SOA serves as a very good tool for manipu-
lator modeling and control. This provides a frame-
work for clearly understanding the dynamics of the
systems of rigid bodies interacting among themselves
and their environment. When operated on velocities
and accelerations, these spatial operators always
yield close form dynamic equations of motion that
arise from Lagrangian analysis.18 SOA primarily of-
fers a mathematical framework, and its simplicity is
its potential to deal with complex manipulator dy-
namics analysis, advanced control and motion plan-
ning problems.20 These advantages of SOA have been
exploited in this work to present a generalized dy-
namic model for robotic manipulators.

The role of SOA for single arm robotic manipu-
lators was established in Rodriguez.17 Later, Rod-
riguez et al.,18 Rodriguez and Kreutz19 and Kreutz
et al.20 carried out extensive work to show the poten-
tial of SOA for robot modeling and control. The ef-
fects of spatial operators to yield very simple state-
ment and solution of the forward dynamics of
multiple arms manipulating a common object have
been presented in Rodriguez.21 Jain and Rodriguez7

applied SOA to model underactuated manipulators
with special emphasis on space manipulators. This
served as a basis for formulating the unified model
presented in Yoshida and Nenchev.4

The spatial operator algebra (SOA) framework
described above is a co-ordinate free notation, where
the co-ordinate frames are defined according to a
modified form of the Denavit–Hartenberg conven-
tion. As per this convention, the co-ordinate frame of
a particular link is attached to that link with frame
origin at the near end of the link. The co-ordinate
frames are shown in Figure 1, and those are assigned
to the world reference/inertial ((w), base ((b), end-
effectors ((e) and object frames ((o) with
(xw ,yw ,zw), (xb ,yb ,zb), $(xci ,ycj ,zcj), j51,2,....,m%,
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and (xo ,yo ,zo), respectively. Further, O and B are the
center of mass of object and base, respectively. In ad-
dition, W serves as the origin of the world reference
frame.

The spatial velocity, acceleration and force vec-
tors of the ith link of the jth robot resolved in the ith
link frame are denoted by the vector symbols iVj , iV̇j
and ifj , respectively, and are defined as iVj
5@ iv j

T ivj
T#TPR6, where iv jPR3 and ivjPR3 are the

angular and linear velocity vectors, respectively, of
the ith link of the jth robot. Here, Rn is the
n-dimensional Eucledian space. iV̇j5@ iv̇ j

T iv̇ j
T#TPR6,

where iv̇ jPR3 and iv̇ jPR3 are the angular and linear
acceleration vectors, respectively, of the ith link of the
jth robot. ifj5@ ih j

T if j
T#TPR6, where if jPR3 and ih j

PR3 are the force and moment vectors, respectively
of the ith link of the jth robot at the ith frame origin.

The spatial transformation matrix i21
i Xj trans-

forms a spatial velocity from the (i21)th co-ordinate
frame to the ith co-ordinate frame of the jth robot and
is defined as

i21
i Xj5F i21

i Rj 0

i21
i Rj i21

i p̃j
T

i21
i Rj

G PR636

where i21
i RjPR333 is a rotation matrix from the (i

21)th link frame to the ith link frame for the jth ro-
bot; Rm3n is the matrix of order m3n ; i21

i pjPR3 is a
vector from the origin of the (i21)th link frame to the
origin of the ith link frame for the jth robot; p̃
PR333 for a vector p5@px py pz#

TPR3 is an anti-
symmetric matrix defined as

p̃5F 0 2pz py

pz 0 2px

2py px 0
G .

Similarly, transformation matrix that transforms a
spatial force from ith link frame to the (i21)th link
frame for the jth robot can be represented as i

i21Xj
5 i21

i Xj
TPR636 and is defined as

i
i21Xj5F i

i21Rj i21
i p̃j i

i21Rj

0 i
i21Rj

G .

The spatial inertia iMj of the ith link of the jth robot
is defined as

iMj5F iIj
imj i

c Ĩj

2 imj i
c Ĩj

imjE3
GPR636,

where imj , the mass of the ith link of the jth robot;
iIjPR333, the inertia tensor of the ith link of the jth
robot at the ith frame origin; i

cIjPR3, the position vec-
tor from the ith frame origin to the center of mass of
the ith link of the jth robot; and EnPRn3n, an identity
matrix.

The general joint model used in this paper is de-
scribed in Brandl et al.,1 Roberson and Schwertassek,2

and Lilly.3 This general joint model has been defined
with the incorporation of the orthogonal vectors iFj
and iFj

c , which represent matrices of free and con-
strained mode vectors of the ith joint of the jth robot,
respectively.

4. KINEMATICS

In this section, the kinematics of a rigid multi-arm
space manipulator system is developed using body
fixed geometric vectors similar to the efficient direct
path method.22 The motion of the center of mass of
the base decides the overall motion of the entire sys-
tem with respect to the inertial frame. In the follow-
ing subsections the position and velocity analysis,
and the various Jacobian matrices associated with the
entire manipulator system, are presented. The free
body diagram (FBD) of the system without the object
and base is shown in Figure 2.

4.1. Position Analysis

The inertial position of an arbitrary point p on the ith
link of the jth robot represented by the position vector
irj

pPR3 and can be expressed as

irj
p5rb1b

i rj
p , (1)

where b
i rj

pPR3 is the position vector of the point p
with respect to the center of mass (CM) of the base
and rbPR3 is the inertial position of the base CM.
Here, b

i rj
p can be expressed in terms of the link lengths

as

b
i rj

p5b
1Ij1 (

k51

i

k
k11Ij1 i

pIj , (2)

where b
1IjPR3 is the position vector for the joint 1 of

the jth robot with respect to the center of mass of the
platform, i

i11IjPR3 is the length of the link connecting
link frames i and i11 of the jth robot, and i

pIjPR3 is
the position vector of the point p with respect to the
ith link frame origin of the jth robot.
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Now, substitution of Eq. (2) in Eq. (1) yields

irj
p5rb1b

1Ij1 (
k51

i21

k
k11Ij1 i

pIj . (3)

If the point p is located on the base of the manipulator
system, then the position vector in Eq. (1) can be ex-
pressed as

rb
p5rb1b

pr, (4)

where rb
pPR3 is the position vector of point p with re-

spect to the base CM and b
ṗrPR3 is the position vector

of any point on the base.

4.2. Velocity Analysis

In this subsection, mathematical expressions for the
velocity of all the links and the end-effectors will be
formulated in terms of system Jacobians, which con-
sist of different mechanical parameters of the ma-
nipulator system.

The inertial velocity of the point p defined in Eq.
(3) can be obtained by differentiating this equation
with respect to time, which yields

iṙj
p5 ṙb

w1vb3b
1Ij1 (

k51

i21
kv j3k

k11Ij1
kv j3 i

pIj , (5)

where ṙb
w is the linear velocity of the base CM with

respect to the world reference frame, and kv j and vb
are the angular velocities of the kth link of the jth ro-
bot and base, respectively. This angular velocity for
single degree of freedom rotational joints between
two links can be represented as

kv j5vb1 (
k51

i
kq̇ j

kẑ j , (6)

where kq̇ j is the kth joint angle rate of the jth robot,
and kẑ j is the unit vector along the axis of the kth joint
of the jth robot. However, the representation of an-
gular velocity for multiple degrees of freedom joints
is discussed afterwards using SOA conventions.

The velocities in Eqs. (5) and (6) can easily be rep-
resented in the spatial operator notation discussed
earlier. However, all these formulations are repre-
sented in the inertial co-ordinate frame, which is not
computationally as efficient as representing these in
the link co-ordinates.16 Henceforth, all the mechanical
quantities (velocity, acceleration, force, inertia etc.), of

Figure 2. Free body diagram of the multi-arm robotic system without base and object.
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which only velocity is considered till now, will be as-
sumed to be represented in the corresponding link co-
ordinates, unless otherwise stated. Then, the spatial
velocity of the ith link of the jth robot, corresponding
to Eq. (5) as represented in the respective link frames,
can be expressed as

iVj5 i21
i Xj

i21Vj1
iFj

iq̇j , (7)

where iVjPR6 is the velocity of the ith link of the jth
robot, iFjPR63 idj is the free mode vector for the ith
joint of the jth robot, and iq̇jPR

idj is the ith joint ve-
locity of the jth robot.

Then, the spatial velocity iVj in Eq. (7) can further
be expressed in terms of the base velocity as

iVj5b
i XjVb1 (

k51

i

k
i Xj

kFj
kq̇j , (8)

where Vb5@vb
T ṙb

T#TPR6 is the base spatial velocity
represented in the base frame with ṙb representing its
linear velocity, and b

i XjPR636 is the transformation
matrix between base and ith link frame of the jth ro-
bot. Here, the inherent properties of transformation
matrices such as i

iX5E6 and i
jX5k

j X i
kX, ;(i ,k) are

used to obtain this relationship.
The spatial velocity of all the links of the jth robot

can be expressed concisely from Eq. (7) as

Vj5bXjVb1XjFjq̇j , (9)

where Vj5@1Vj
T 2Vj

T
¯

nVj
T#TPR6n, Fj

5diag(1Fj
2Fj¯

nFj)PR6n3dj, q̇j5@1q̇j
T 2q̇j

T
¯

nq̇j
T#T

PRdj, bXj5@b
1Xj

T
b

2 Xj
T
¯b

nXj
T#TPR6n36, and the matrix

Xj is given as

Xj5F 1
1Xj 0 0 ¯ 0

1
2Xj 2

2Xj 0 ¯ 0

• • • ¯ •

• • • ¯ •

1
nXj 2

nXj • ¯ n
nXj

GPR6n36n. (10)

For all the m robots, Eq. (9) can be concisely expressed
as

V5XbVb1XFq̇, (11)

where V5@V1
TV2

T
¯Vm

T #TPR6nm, Xb
5@bX1

T
bX2

T
¯bXm

T #TPR6nm36, X5diag(X1X2¯Xm)
PR6nm36nm, F5diag(F1F2¯Fm)PR6nm3dm, and q̇
5@ q̇1

Tq̇2
T
¯q̇m

T #TPRdm.

Interpretation of the spatial velocity vector for
the entire manipulator-base system expressed in Eq.
(11) is simplified if it is expressed in terms of its in-
dividual component matrices. The block diagonal
matrix operator F, when it acts on q̇, results in a vec-
tor of relative spatial link velocities. Due to its block
diagonal feature, it is memoryless or nonrecursive.
Then, X acts on Fq̇ to provide the composite vector
of link spatial velocities. Similarly, Xb projects the
base velocity Vb onto the respective joint frames.
Hence, Xb and X represent the propagation of the base
and joint velocities, respectively, across the link
frames. It is noteworthy that X is lower block trian-
gular, hence is causal in nature. This term will be ex-
plained in detail in Section 5 during the discussion of
force propagation.

The end-effector velocity of the jth robot, denoted
by Vj

ePR6, is defined as per Eq. (8) as

Vj
e5n11Vj5 n

n11Xj
nVj . (12)

Here, (n11)th frame is the end-effector frame, and
n

n11Xj maps the spatial velocity of the nth link frame
to (n11)th or the end-effector frame.

Now using Eq. (8), we can get

Vj
e5 n

n11XjF b
nXjVb1 (

k51

n

k
nXj

kFj
kq̇jG

5Bj bXjVb1BjXjFjq̇j , (13)

where Bj5@0¯0 n
n11Xj#PR636n.

In Eq. (12), Bj acts on link spatial velocities XjFjq̇j
to propagate the individual link frame spatial veloci-
ties to form the end-effector velocities. The total end-
effector velocity is the sum of the transformed base
velocity and link velocities to the end-effector frame.

The end-effector velocity due to all the manipu-
lators yields

Ve5BXbVb1BXFq̇5JbVb1Jqq̇, (14)

where JbPR6m36 is the base Jacobian, JqPR6m3dm is
the link Jacobian and B5diag(B1B2¯Bm)
PR6m36nm. Hence, Jb5BXb and Jq5BXF.

In Eq. (14) Jb is the base Jacobian that represents
the contribution of the base velocity on the end-
effector velocity, whereas Jq is the link Jacobian ma-
trix that describes the motion induced at the end-
effector due to the motion of the active degrees of
freedom. The action of Jq can be summarized as (i) Fq̇
results in relative spatial velocities between the links
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along the joint axes; (ii) X then causally propagates
these relative velocities starting from the base to the
tip to form all the link spatial velocities; and (iii) B
then projects out the last link spatial velocities nVj ,
j51,...,m from the link spatial velocity vector and
propagates it to the tip forming Ve. Then, the action
of Jb can be summarized as (i) Xb projects base veloc-
ity Vb on to all the active joints; (ii) then B projects the
effects of Vb on nth link frame onto the end-effector
frame.

Both base and link Jacobians Jb and Jq are inde-
pendent of dynamical quantities such as link masses
and inertia. They depend only upon their kinematical
properties.

5. INVERSE DYNAMICS

The inverse dynamics problem is concerned with cal-
culating the driving forces/torques needed to pro-
duce a prescribed motion with a given current state
joint/base position and velocity, and desired accel-
eration. The inverse dynamics problem serves as the
foremost problem to be solved for the control of any
manipulator system. This vital issue of a robotic ma-
nipulator system is addressed in the following sub-
sections.

5.1. Force Relations

The objective of this subsection is to formulate math-
ematical expressions for the forces acting on different
parts of the manipulator system in terms of the link
and base motion variables, and manipulator system
parameters. Particularly, the effects of external forces
acting at the end-effectors on the links and base of the
manipulator system will be represented mathemati-
cally.

It has been shown that the acceleration of the base
V̇b is dependent on the motion of the manipulators,
and so can only be obtained after the computation of
the manipulator motion variables. Now, the accelera-
tion of the links of the manipulators can be obtained
by differentiating Eq. (11) with respect to time, which
yields

V̇5ẊbVb1XbV̇b1ẊFq̇1XFq̈

5XFq̈1ẊbVb1XbV̇b1ẊFq̇, (15)

where V̇PR6nm is the link acceleration vector, q̈
PRdm is the joint acceleration, V̇bPR6 is the base ac-

celeration, and ẊbPR6nm36 and ẊPR6nm36nm are the
time derivatives of Xb and X, respectively. In this
equation, V̇b is an unknown variable, whereas Vb is
known.

From the FBD of the ith link of the jth robot as
shown in Figure 3, the force exerted on the ith link of
the jth robot in Cartesian space is expressed as

ifj2 i11
i Xj

i11fj5
iMj

iV̇j1
ibj (16a)

5 i11
i Xj

i11fj1
iMj

iV̇j

1 ibj , (16b)

where iMj,R636 is the spatial inertia, iV̇jPR6 is the
spatial acceleration, ifjPR6 is the spatial force, and
ibj5(d/dt)( iMj)

iVj is the bias force on the ith link of
the jth robot. The bias force is the force applied to the
rigid body to produce zero spatial acceleration. In Eq.
(16), i11

i Xj projects the force acting on (i11)th frame
onto the ith link frame. In addition, any external
forces that exist such as gravitational forces, etc. can
be included at this stage in Eq. (16). However, to keep
the mathematical relationships more clear and lucid,
the effects of any external forces on the links are ig-
nored.

In addition, Eq. (16) can be rearranged to be ex-
pressed in terms of the end-effector force n11fj as

ifj5n11
i Xj

n11fj1(
k5i

n

k
i Xj~

kMj
kV̇j1

kbj!, (17)

Here, the first term signifies the contribution of the
end-effector force towards the force on a particular
link frame and the second term inside the summation
symbol represents the effects of all the link forces on
the ith link starting from the last link.

Figure 3. Free body diagram of the ith link of the jth
robot.
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Now the force vector for the jth robot can be de-
scribed as

fj5Xj
T~Dj

n11fj1MjV̇j1bj!, (18)

where fj5@1fj
T 2fj

T
¯

nfj
T#TPR6n, V̇j

5@1V̇j
T 2V̇j

T
¯

nV̇j
T#TPR6n, bj5@1bj

T 2bj
T
¯

nbj
T#TPR6n,

Dj5@0¯0n
n11Xj#

T5Bj
TPR6n36 and Mj

5diag(1Mj
2Mj¯

nMj)PR6n36n.
Then, combining the terms in Eq. (18) for all the

m robots yields

f5XT~MqV̇1b!1XTDfe , (19)

where f5@f1
Tf2

T
¯fm

T #TPR6nm, V̇5@V̇1
TV̇2

T
¯V̇m

T #T

PR6nm, b5(d/dt)(Mq)V5@b1
Tb2

T
¯bm

T #TPR6nm, D
5diag(D1D2¯Dm)PR6nm36nm, Mq
5diag(M1M2¯Mm)PR6nm36nm, and fe
5@n11f1

T n11f2
T
¯

n11fm
T #TPR6m is the force exerted by

the end-effector on the object or any external force
acting on the end-effector. Here, XT is upper block tri-
angular as opposed to X which is lower block trian-
gular. Hence, XT is anticausal.18 XT propagates link
forces from the end-effector to the base that can be
stated as the anticausal direction in contrast to the
base-to-end-effector propagation of X, which is
known as causal. In addition, Mq is the block diagonal
and so can be interpreted as a memoryless operator.

Now, Eq. (19) can be rewritten as

f2XTDfe5XT~MqV̇1b!. (20)

Here, the action of the expression XTD on fe is as fol-
lows: (i) D drags the end-effector forces of each ma-
nipulator fj

e to its last link frame, which can be rep-
resented as @0 0¯nf1

T0 0¯nf2
T
¯0 0¯nfm

T #TPR6nm;
(ii) then XT propagates each of these forces anticaus-
ally from nth link frame to the first link frame forming
the interaction spatial forces between neighboring
links, and is represented as f8
5@1f1

T 2f1
T
¯

nf1
T 1f2

T 2f2
T
¯

nf2
T
¯

1fm
T 2fm

T
¯

nfm
T #TPR6nm.

Then, the remaining expression (MqV̇1b) defines the
link forces due to their motion. The action of XT on
(MqV̇1b) is to represent the interaction spatial forces
by propagating all the single link forces due to their
motion anticausally to the respective link frames.

From Eq. (17), the force exerted by the base on the
first link of the jth robot can be expressed as

1fj5n11
1Xj

n11fj1 (
k51

n

k
1Xj~

kMj
kV̇j1

kbj!.

This force vector 1fj is nothing but the first equation
in the equation set derived in Eq. (18), which can al-
ternatively be represented as

1fj5@1
1Xj 2

1 Xj¯n
1Xj#~Dfe1MqV̇1b!. (21)

5.2. Base Dynamics

The objective of this subsection is to find expressions
for both V̇ and V̇b in terms of fb , fe and q̈. Now, the
force equilibrium equation of the base from its FBD,
as illustrated in Figure 4, can be represented as

fb2(
j51

m

1
bXj

1fj5MbV̇b1bb , (22)

where fbPR6 is the external base force acting on the
CM of the base, MbPR636 is the base inertial matrix,
V̇bPR6 is the base acceleration, and bb5(d/dt)
3(Mb)VbPR6 is the base bias force. By substituting
the value of 1fj from Eq. (21) into Eq. (22) and rear-
ranging the terms, the modified expression for fb is
given as

fb5MbV̇b1bb1(
j51

m
bXj

T~Dfe1MqV̇1b!

5MbV̇b1bb1Xb
T~Dfe1MqV̇1b!. (23)

Now, solving Eq. (23) for the base acceleration gives

V̇b5Mb
21$fb2bb2Xb

T~Dfe1MqV̇1b!%. (24)

Then, substituting the value of V̇b in Eq. (15), the ac-
celeration of the manipulators can be expressed as

Figure 4. Free body diagram of the base of the multi-arm
robotic system.
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V̇5~E6nm1XbMb
21Xb

TMq!21$XFq̈1ẊbVb

2XbMb
21Xb

T~Dfe1b!1XbMb
21~fb2bb!1ẊFq̇%.

(25)

Hence, with known external force and base velocity,
V̇ can be computed for each link of all the manipu-
lators.

Now, substituting the value of V̇ in Eq. (25) into
Eq. (24), we have

V̇b5Mb
21$~E62Xb

TGXbMb
21!~fb2bb!2Xb

T~E6nm

2GXbMb
21Xb

T!Dfe2Xb
TGXFq̈2Xb

TGẊbVb

1Xb
TGXbMb

21Xb
Tb2Xb

TGẊFq̇2Xb
Tb%, (26)

where G5(Mq
211XbMb

21Xb
T)215Mq(E

1XbMb
21Xb

TMq)21.
The inversion of the matrix can be simplified us-

ing the matrix inversion lemma, which gives

~Mq
211XbMb

21Xb
T!215Mq2MqXb~Mb

1Xb
TMqXb!21Xb

TMq .

Now, in this simplified form, the maximum order of
the matrix to be inverted has decreased to a 636 ma-
trix.

5.3. Equations of Motion

Here, a mathematical expression for the joint torque
is presented in terms of fe and q̈. Now, an explicit re-
lationship between the force and joint position, veloc-
ity, and acceleration can be obtained by eliminating V̇
from Eqs. (25) and (20):

f2XT~Mq
211XbMb

21Xb
T!21Mq

21Dfe

5XT~Mq
211XbMb

21Xb
T!21$XFq̈1ẊbVb1Mq

21b

1XbMb
21~fb2bb!1ẊFq̇% (27)

The active joint torque T can be obtained by multi-
plying both sides of Eq. (27) with FT, which gives

FTf2FTXT$Mq2MqXb~Mb

1Xb
TMqXb!21Xb

TMq%Mq
21Dfe

5FTXT$Mq2MqXb~Mb1Xb
TMqXb!21Xb

TMq%

3$XFq̈1ẊbVb1Mq
21b

1XbMb
21~fb2bb!1ẊFq̇%.

This yields the final expression for the joint torque
vector, which can be concisely represented as

T̂2JTfe5Mq̈1C, (28)

where the generalized inertia tensor M5Ma
2Map

T Mp
21Map with Ma5FTXTMqXF, Map

T

5FTXTMqXb , Mp5Mb1Xb
TMqXb and Map

5Xb
TMqXF; J is the generalized Jacobian matrix and

its transpose is JT5Ja2Map
T Mp

21Jp with Ja5FTXTD
and Jp5Xb

TD; the coriolis and centrifugal force vector
C5Ca2Map

T Mp
21Cp with Ca5FTXTb

1FTXTMqẊFq̇, Cp5Xb
T(b1MqẊFq̇)2(MbXb

21ẊbVb

2bb), and T̂5Ta2Map
T Mp

21Tp with Tp5fb , and T
5Ta5FTf. The representation in Eq. (28) is also
known as the inverse dynamics equation or the
torque equation. This equation yields the values of fb
and Ta from a given q̈ and fe .

In the above representation the subscript ‘‘a’’ and
‘‘p’’ stands for active and passive elements, respec-
tively. The notion of active and passive has been in-
troduced to make the dynamic analysis more general.
In a space robot, the base serves as a passive joints,
which in its generalized representation includes all
passive joint in the system. A thorough physical in-
terpretation of Eq. (28) has been presented in Section
6. The derivation of these coefficient matrices and
vectors are shown in Appendix B. In addition, M is a
symmetric positive definite matrix and is also known
as the system mass matrix.

5.4. Object Dynamics

This subsection deals with the computation of fe from
the knowledge of the object acceleration V̇o and its
mechanical parameters. An object is assumed to be
held rigidly by m manipulators. The FBD of the object
is shown in Figure 5. Then, the net generalized force
at the center of mass of the object, due to all the end-
effector forces acting on it, can be represented as23,24

fo5WTfe , (29)

where WT5@n12
n11X1

T
n12

n11 X2
T
¯n12

n11Xm
T #PR636m, with (n

12)th and (n11)th joints representing object center
of mass and end-effector contact point with the ob-
ject, respectively; fo5@ho

T fo
T#TPR6, with foPR3 and

hoPR3 the force and moment vectors at the object
center of mass. The matrix W is known as the grip
matrix or grasp matrix. This is a positive definite ma-
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trix and thus nonsingular. Now, the transformation
matrix n12

n11Xj
T5n11

n12Xj transforms the contact force of
the jth manipulator to its equivalent at the center of
mass of the object. This can be defined as

n11
n12Xj5F E3 03

z j~qj! E3
G , (30)

where E3 and 03 are 333 identity and zero matrices,
respectively. The 333 matrix z j(qj) arises from the
cross-product operator n11

n12pj3 , where n11
n12pj

5@n11
n12pj ,x n11

n12 pj ,y n11
n12 pj ,z#

T is the moment arm from
the jth end-effector contact point to the center of mass
of the object represented in the base frame. This can
be defined as

z j~qj!5F 0 n11
n12pj ,z 2n11

n12pj ,y

2n11
n12pj ,z 0 n11

n12pj ,x

n11
n12pj ,y 2n11

n12pj ,x 0
G . (31)

The force balance equation for this object from its
FBD in Figure 5, can be represented as

fo5MoV̇o1bo , (32)

where MoPR636 is the object inertia matrix and bo
5(d/dt)(Mo)VoPR6 is the bias force on the object re-
quired to produce zero object acceleration.

Now combining Eqs. (29) and (32), the following
dynamic equation for the object can be obtained:

MoV̇o1bo5WTfe . (33)

6. PHYSICAL INTERPRETATION OF THE
INVERSE DYNAMICS EQUATION

The inverse dynamics equation as represented in Eq.
(28) consists of a mass matrix term M due to all active
joints Ma and an expression consisting of dynami-
cally coupled active and passive joint variables. The
mass matrix factorization of operator Ma due to ac-
tive joints is also called the Newton–Euler
factorization,18 as it establishes the equivalence be-
tween Lagrangian and Newton–Euler formulations
of manipulator dynamics. The action of Ma can be de-
scribed as follows: (i) F acts on the joint acceleration
q̈ to result in a vector of relative spatial accelerations
between the links; (ii) then X acts on Fq̈ in a causal
way to propagate link relative accelerations to obtain
spatial accelerations of all the links; (iii) then the
memoryless operator Mq acts on XFq̈ to represent all
spatial forces on each of the links; (iv) then XT acts on
MqXFq̈ for the propagation of all the spatial forces to
form the link interaction spatial forces; and (v) fi-
nally, the action of the memoryless operator FT on
link interaction spatial forces is to project each of
these forces to the joint axes, thereby resulting in joint
active torques Ta .

Now the action of the second expression
Map

T Mp
21Map of the system mass matrix on the joint

acceleration can be interpreted as follows: (i) the ex-
pression Xb

TMqXb inside Mp
21 represents the transfor-

mation of the quantity Mq to the base co-ordinate
frames. Thus, Mp signifies the effective mass of the
entire system projected onto the base co-ordinate sys-
tem; (ii) analogous to the reasoning in active vari-
ables, Mapq̈ projects all spatial forces on each of the
links onto the base interaction spatial force; (iii) then
Mp

21 acts on Mapq̈ to represent the base spatial accel-
eration corresponding to the base spatial force; (iv)
then Xb operates on Mp

21Mapq̈ to propagate the base
spatial acceleration into all the active links; (v) then
the memoryless operator Mq acts on XbMp

21Mapq̈ to
represent all spatial forces on each of the active links;
(vi) then XT operates to propagate anticausally all the
single link spatial forces to form link interaction spa-
tial forces; and (vii) finally, the memoryless operator
FT acts on the link interaction forces to project each
of them onto their respective joint axes to obtain the
joint torques.

Thus, the action of Map
T Mp

21Map can be precisely
summarized as follows. The active joint accelerations
q̈ are converted to the effective forces projected onto
the passive co-ordinate by the operator Map , and sub-
sequently converted into equivalent accelerations in
passive co-ordinates by the action of Mp

21. Then,

Figure 5. Free body diagram of the object held by m ma-
nipulators.
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these accelerations are projected back onto the active
components through Map

T in the shape of active
torques on the joints. This shows that by this process
the dynamic interaction between active and passive
elements are introduced into the system equation.

The system Jacobian matrix JT also consists of one
active variable component, and one dynamic cou-
pling component representing the interaction among
active and passive variables. The factorization of the
active components of the generalized Jacobian matrix
Ja5FTXTD5Jq

T clearly satisfies the well known dual
relationship between velocity and force.25 The action
of Ja on fe can be summarized as follows: (i) the action
of D on fe maps it into the column vector as
@0 0¯nf1

T0 0¯nf2
T
¯0 0¯nfm

T #T; (ii) then XT acts on
each of these forces at the last link frame of each ma-
nipulator to propagate those from the nth link frame
to the first link frame (thus constituting the interac-
tion spatial forces between neighboring links); and
(iii) finally, FT projects each component of the inter-
action spatial force onto the respective joint axes to
obtain the joint torques. This effectively shows how
the end-effector force affects each of the active joints
and vice versa.

Then, the action of the second component of JT,
which is represented by Map

T Mp
21Jp , can be explained

as follows: (i) first, to analyze the action of Jp on fe , it
can be observed that D takes the end-effector forces
fe onto the last link frame of each manipulator and
then Xb

T acts on it to project all these forces onto the
passive frame to represent the effective spatial force
vector in that frame; (ii) then Mp

21 maps the effective
spatial force at the passive co-ordinates due to fe into
effective spatial acceleration in those co-ordinates;
and (iii) finally, Map

T , through successive transforma-
tions by its individual component factors as de-
scribed in the preceding explanation of mass matrix,
projects the effective passive spatial accelerations into
joint torques of the active joints.

The coriolis and centrifugal force is also grouped
into purely active and coupled terms, which can be
interpreted as follows: (i) the purely active compo-
nent can be analyzed with the action of XT that acts
on the net active link bias force vector b to represent
the active link interaction bias force, and then FT acts
on that to project XTb onto joint axes to contribute to-
wards joint torques; (ii) the dynamic coupling term
Cp represents the effective bias force due to the mu-
tual interaction between the links and the base. The
role of Cp can be analyzed by considering separately
both of its constituent expressions Xb

T(b1MqẊFq̇)
and (MbXb

21ẊbVb2bb). Here, the former is the pro-

jection of the bias forces of the active joints onto the
passive joints, and the latter is purely a passive bias
force. Now, the analysis of the active part can be pro-
gressed as follows: (i) the diagonal memoryless op-
erator F acts on q̇ to result in a vector of relative spa-
tial velocities between the manipulator links; (ii)
then the action Ẋ is to transform the spatial velocities
Fq̇ into relative spatial accelerations between the
links and subsequently to propagate these relative ac-
celerations causally from base to tip to result in biases
in the link spatial accelerations; (iii) Mq then acts on
the link bias accelerations to represent spatial bias
forces on each of the links; (iv) the remaining direct
spatial bias force on each of the links due to their spa-
tial momentum is added to the previously calculated
spatial bias forces on the active joints; (v) then, Xb

T

projects the net spatial bias forces in active joint space
to passive joint space. Then, the remaining passive
parts can be analyzed as follows: (i) Ẋb acts on Vb to
represent the spatial bias acceleration on the passive
joints due to their motion, and propagates these into
the active joint space to represent the bias accelera-
tions; (ii) then Xb

21 acts on ẊbVb to project the bias
accelerations in the active space to passive space; (iii)
the action of Mb then represents the spatial bias forces
on the passive joints; (iv) then the difference of this
bias force and that due to passive body momentum
results in the net bias forces due to passive bodies
alone.

Now, it can be observed that the difference be-
tween the active joint bias forces and passive joint
bias force on the passive platform yields the effective
passive bias force as represented in the passive co-
ordinates. As discussed earlier, the action of Mp

21 on
Cp is to convert the effective base interaction link bias
force into spatial accelerations. Then, Map

T projects
back these accelerations onto the active space in the
shape of active joint torques, thereby representing the
effect of interaction among links and base on final
control torque.

Hence, the overall role of coriolis and centrifugal
force vectors can be interpreted as the net effect of ac-
tive bias forces, passive bias forces and interaction
bias forces on the active torque to control the system.

The last component to be analyzed is the system
torque T̂. Usually, this consists of a purely active part,
and an interaction part. The purely active torque Ta
5FTf represents the joint torques due to end-effector
force and motion of the individual links without any
passive variables in the system. However, when pas-
sive components are present that are subject to
known desired external forces, they alter the overall
torque expression. Hence, the effects of an external
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force fb on the passive joints (i.e., moving base in a
space manipulator system) can be analyzed as fol-
lows: (i) Mp

21 acts on Tp5fb to transform these forces
into the spatial interaction acceleration in the passive
body frames; (ii) then Map

T projects these interaction
accelerations in the passive frame onto the active
frames by transforming them into joint torques.

From the above analysis, it has been observed
that one common expression dictates the role of pas-
sive components and their interaction with the active
components. This expression is Map

T Mp
21, known as

the dynamic coupling expression. This dynamic cou-
pling expression maps the mutual interaction terms
between active and passive variables (mass matrix,
coriolis and centrifugal force, and system torques)
onto the active variables. Hence, the role of the dy-
namic coupling factor can be expressed by two dis-
tinct factors. The factor Mp5Mb1Xb

TMqXb represents
the effective spatial inertia of the complete system
represented in the passive frame. Hence, Mp

21 is al-
ways used to transform a spatial force into the effec-
tive spatial acceleration of the passive bodies. Then,
as analyzed before, the action of Map

T on these accel-
erations is to transform them into their respective
contributions towards the final torques by projecting
all onto active space.

7. FORWARD DYNAMICS

The forward dynamics analysis of a co-operating ma-
nipulator system holding a common object mounted
on a mobile platform can be described with reference
to Eq. (28), which involves the computation of the
joint accelerations q̈ with the knowledge of the input
torques and forces, T and fb , current state of the ma-
nipulator, q, q̇, and motion of the base.

The end-effector velocity can be expressed in
terms of the object velocity with the use of principle
of virtual work that establishes the duality between
forces and velocities:

Ve5WVo, (34)

where VoPR6 is the velocity of the center of mass of
the object.

The end-effector acceleration V̇e can be obtained
by differentiating Eq. (34) with respect to time:

V̇e5WV̇o1ẆVo. (35)

Here, V̇oPR6 is the object spatial acceleration.

Another representation for V̇e can be obtained
from Eq. (14):

V̇o=JbV̇b1Jqq̈1 J̇bVb1 J̇qq̇. (36)

Now, the base acceleration V̇b in Eq. (26) can be rep-
resented as

V̇b5JDq̈1terms not containing acceleration,
(37)

where

JD5Mp
21Map . (38)

Here JD is also called as the disturbance Jacobian (deri-
vation is given in Appendix B). In the expression of
JD , the factor Mp

21Map , which is the transpose of the
dynamic coupling factor, acts on the active joint mo-
tion q̈ to transform it into spatial accelerations of the
passive body represented in the passive frame.
Hence, the disturbance Jacobian describes the incre-
mental motion of passive joints. This incremental mo-
tion of passive joints is solely due to the disturbance
on the passive joints by the active joints.

Substituting the values for V̇b as in Eq. (26) into
Eq. (36), we have

V̇e5JbMb
21$~E62Xb

TGXbMb
21!~fb2bb!2Xb

TGẊbVb

1Xb
TGXbMb

21Xb
Tb2Xb

Tb%1~Jq2JbJD!q̈1 J̇bVb

1~ J̇q2JbMb
21Xb

TGẊF!q̇

2JbMb
21Xb

T~E6nm2GXbMb
21Xb

T!Dfe . (39)

Now, Eq. (39) can be represented as

V̇e5Jq̈1terms not containing acceleration,
(40)

where

J5Jq2JbJD . (41)

Here, J is called the generalized Jacobian matrix.
Hence, J is represented by the difference between the
pure active link Jacobian and the disturbance Jaco-
bian projected onto the active space by the base Jaco-
bian. Expressed another way, the disturbance caused
by the movements of the active joints on the passive
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joints is reflected back onto the active space to change
its motion. Thus, it shows the strong mutual depen-
dency of passive and active variables.

Now, V̇e in Eq. (39) can be represented as

V̇e5JbMb
21$~E62Xb

TGXbMb
21!~fb2bb!2Xb

TGẊbVb

1Xb
TGXbMb

21Xb
TbXb

Tb%1JM21~T2C!1 J̇bVb

1~ J̇q2JbMb
21Xb

TGẊF!q̇2$~Jq2JbMb
21Xb

TGXF!

3M21JT1JbMb
21Xb

T~E6nm2GXbMb
21Xb

T!D%fe .

(42)

However, V̇e can also be expressed as

V̇e5V̇open
e 2V̇constrained

e , (43)

where

V̇open
e 5JbMb

21$~E62Xb
TGXbMb

21!~fb2bb!2Xb
TGẊbVb

1Xb
TGXbMb

21Xb
TbXb

Tb%1JM21~T2C!1 J̇bVb

1~ J̇q2JbMb
21Xb

TGẊF!q̇ (44)

and

V̇constrained
e 5$JM21JT1JbMb

21Xb
T

3~E6nm2GMb
21Xb

TE6nm!D%fe . (45)

Hence, the system can be modeled as a superposition
of an open chain part and a constrained part due to
the presence of co-operation.

Now, using Eqs. (35) and (43), it is possible to find
an explicit relationship between the end-effector force
and object acceleration, which gives

V̇constrained
e 5V̇open

e 2WV̇o2ẆVo. (46)

Then, the end-effector force vector can be expressed
as

fe5H21~V̇open
e 2WV̇o2ẆVo!, (47)

where

H5JM21JT1JbMb
21Xb

T~E6nm2GXbMb
21Xb

T!D.
(48)

In Eq. (48), the matrix HPR6m36m is a square,
nonsingular matrix and it plays an important role in
the robot dynamics calculations, as this yields unique
end-effector forces with given values of fb and Ta .
Now, substituting the value of fe from Eq. (47) into
Eq. (33) gives

V̇o5~Mo
211WTH21W!21$H21~V̇open

e 2ẆVo!2bo%.
(49)

Once the spatial acceleration of the object V̇o is cal-
culated from Eq. (49), then Eq. (47) can give all the
end-effector spatial forces.

8. CASE STUDIES

Now in this section, the equations of motion for free-
base space robots and fixed-base robots are presented
as a special case of the generalized formulation. Fur-
ther, the generality of the above equations of motion
for other cases such as flexible base and flexible arm
manipulators is discussed in Appendix C.

8.1. Fixed-Base Manipulator

For a fixed base, fully actuated, rigid link manipula-
tor system, the variables in Eq. (28) can be set to the
following values

Mo→` , Vb→` , and fb50.

Hence, now the dynamics of a fixed base manipulator
system becomes

Ta2JTfe5Mq̈1C,

V̇e5WV̇o1ẆVo5Jqq̈1 J̇qq̇,

MoV̇o1bo5WTfe ,

where JT5Ja5FTXTD, M5Ma5FTXTMqXF, C
5Ca5FTXTb1FTXTMqẊFq̇ and the other symbols
carry the same definitions as given before.

8.2. Free-Floating Manipulator

A free-floating manipulator system configuration is
achieved when the base (spacecraft) is not controlled,
i.e., when no external forces are acting on the system.
For this case, only the base force is required to be set
to zero, i.e., fb50.
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Hence, now the dynamics of a free-floating ma-
nipulator system can be described by the following
equations:

Ta2JTfe5Mq̈1C,

V̇e5WV̇o1ẆVo5JbV̇b1Jqq̈1 J̇bVb1 J̇qq̇,

MoV̇o1bo5WTfe .

All other symbols carry the same definitions as given
before.

The end-effector force fe occurs when the ma-
nipulator collides or captures an object in space and,
thereafter, manipulates the captured object.

8.3. Free-Flying Manipulator

A free-flying manipulator system configuration is
achieved when the base (spacecraft) is explicitly con-
trolled by applying an external force by means of a
thruster on the base. In this case, the dynamics can be
represented by the systems of equation as given in the
original development. Hence, the free-flying system
dynamics can be represented by

T̂ōJTfe5Mq̈1C,

V̇e5WV̇o1ẆVo5JbV̇b1Jqq̈1 J̇bVb1 J̇qq̇,

MoV̇o1bo5WTfe .

All the symbols carry the usual definitions as de-
scribed before and the base force fb is the active force
applied by the thrusters. It is important to observe
with reference to the base constraint force in flexible-
base systems, where it is a passive force (Appendix
C).

For a noncooperative, unconstrained manipula-
tor system, the object dynamics is absent, and the
end-effector force fe can be set to zero. All the case
formulations discussed above are explicitly defined
for multiple arm systems. Single arm manipulators
can be dealt with by setting the number-of-
manipulators variable to one.

9. COMPUTATION OF MANIPULATOR MOTION

The algorithm for the motion simulation, with the
unified system dynamics model as described above,
can be described by the following series of steps:

(i) solution of the unconstrained open-chain sys-
tem,

(ii) object acceleration calculation,
(iii) end-effector force vector calculation,
(iv) calculation of the constrained closed-chain

joint accelerations,
(v) calculations of base acceleration, and

(vi) integration of the joint rates and base accelera-
tion to compute the next states.

In step 1, V̇open
e is calculated assuming zero end-

effector forces. Then, in step 2, object acceleration is
calculated using Eq. (45). Step 3 uses this acceleration
to calculate the end-effector forces exerted on the ob-
ject by the manipulators. With the given tip forces fe ,
the closed chain accelerations are calculated in step 4.
Then, base acceleration is calculated in step 5. Finally,
a fourth order Runge–Kutta integration is used to cal-
culate the next state position and rates for all the bod-
ies in the system. This algorithm, together with nec-
essary computations, is summarized in Table I.

In the above implementation, the major issue to
be considered is the computation of model param-
eters. This can be represented by the following steps:

(1) Calculation of transformation matrix X from
the knowledge of corresponding rotation ma-

Table I. Dynamic simulation algorithm for a unified sys-
tems model

Step 1: Compute V̇open
e and model parameters

Step 2: Solve for V̇o

V̇o5(Mo
211WTH21W)21$H21(V̇open

e 2ẆVo)
2bo%

where
H5JM21JT1JbMb

21Xb
T(E6nm2GXbMb

21Xb
T)D

Step 3: Solve for fe

fe5H21(V̇open
e 2WV̇o2ẆVo)

Step 4: Solve for q̈

q̈5M21~T̂2JTfe2C!

Solve for V̇b

V̇b5Mb
21$(E62Xb

TGXbMb
21)(fb2bb)2Xb

T(E6nm

2GXbMb
21Xb

T)Dfe 2Xb
TGXFq̈2Xb

TGẊbVb

1Xb
TGXbMb

21Xb
Tb2Xb

TGẊFq̇Xb
Tb%

Step 5: Use any numerical integration method to
integrate joint and base accelerations to obtain
the next state position and rates.
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trices and link lengths. Transformation matri-
ces between two nonconsecutive link frames
can be calculated as follows:

i
nX5n21

n X i
n21X.

(2) Calculation of the matrices Xb , B, and D can
be performed by using the transformation
matrices determined in step 1.

(3) Calculation of the derivative of X, Xb , B and
D.

The derivative of a transformation matrix i
i11X

with respect to time is calculated as

d
dt

~ i
i11X!5 i

i11Vx̂ i
i11X,

where i
i11V is the velocity of (i11)th link frame with

respect to the ith link frame represented in the (i
11)th link frame.

More specifically for rotational joints, this can be
calculated simply as follows

d
dt

~ i
i11X!5F i

i11Vx 0

0 i
i11VxG

i

i11

X,

where i
i11V is the relative angular velocity between

the ith and (i11)th frame resolved in the (i11)th
frame. This can be defined as

i
i11V5 i

i11Rv i2v i11

Similarly, the derivative of the force transformation
matrix i11

i X is given by

d
dt

~ i11
i X!5S d

dt
~ i11

i X! D T

52 i11
i X i

i11Vx̂ .

In addition, for a rotational joint, this can be repre-
sented as

d
dt

~ i11
i X!52 i11

i XF i
i11Vx 0

0 i
i11VxG .

The derivative of the transformation matrices of non-
consecutive frames can be calculated as follows

d
dt

~ i
nX!5

d
dt

~n21
n X!

d
dt

~ i
n21X!.

(4) Calculation of derivatives of Jb and Jq can be
achieved using

d
dt

~Jb!5BẊb1ḂXb ;

d
dt

~Jq!5BẊF1ḂXF.

(5) Calculation of M, JT and C, together with the
coefficients of fb , can be achieved as per the respec-
tive formulations in Eq. (28).

10. DISCUSSION

The inverse dynamics equation presented in Eq. (28)
has a similar structure to that presented in Appendix
A, Eq. (A9) for the work of Yoshida and Nenchev.4

However, in Eq. (A9) the internal structures of the co-
efficients are not shown, which rather prohibits a di-
rect comparison of Eqs. (28) and (A9). Nevertheless,
in the initial work of Jain and Rodriguez,7 the explicit
internal structures are presented in Eqs. (A1) and
(A2). Now, a comparison of the structures of Ma in
both the cases shows a significant similarity, with the
exception that the modal matrix in Eq. (28) is the en-
tire system modal matrix F whereas in (A2) it is the
active joint modal matrix Fa . However, the structure
of Mp , Map , Cp , and Ca are significantly different in
both the cases. This apparent difference in the results
may be due to the fact that the models of Jain and Ro-
driguez, and Yoshida and Nenchev, are based on the
underlying assumption of linear separability of the
active and passive components. An intuitive analysis
immediately focuses on this aspect, because the ma-
nipulator system is a highly nonlinear, coupled, dy-
namic system. Hence, the simple superposition phi-
losophy of breaking the whole system into active and
passive subsystems, and dealing with them sepa-
rately, does not hold good for a nonlinear system.
This might be the reason for the clear-cut difference in
the internal structures of all the nonlinear term rep-
resentations. However, it is noteworthy that the over-
all structure of the results of mapping of passive com-
ponents onto the active ones through a dynamic
coupling expression is true in all the cases.

The multiple degrees of freedom joints in a sys-
tem can be all active or all passive or a mix of active
and passive component degrees of freedom. The
former two cases can be dealt with directly under the
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active or passive heading. However, a joint with a
mixture of active and passive component degrees of
freedom is considered in Jain and Rodriguez, with the
assumption that this joint can be represented and
modeled by an equivalent concatenation of active
and passive joints. But, the model proposed here can
very easily incorporate this type of mixed active and
passive joint into the modal matrix F. This is the ma-
jor advantage of modeling multiple degrees of free-
dom joints by a modal matrix.

11. CONCLUSIONS

This paper has described a unified approach to dy-
namic modeling of various manipulator configura-
tions. The model has been developed using basic
principles of mechanics. Spatial operator algebra has
been used to describe the kinematic and dynamic be-
havior. Starting with very basic spatial operators,
more complex spatial operators have been developed
to describe the dynamical behavior.

After establishing the generality of the free base
to represent various manipulator configurations, the
model formulation has been discussed in the context
of space robots. Finally, the results for a space robot
have been extended to represent any underactuated
manipulator configuration. A thorough analysis of all
the kinematic and dynamic characteristics has been
carried out during the course of formulating the
model. A complete physical interpretation of the final
equations of motion has been presented. The poten-
tial of SOA for gaining insights into the complex for-
mulations has been strongly justified. The concept of
open architecture for the simulation of close-chain
mechanisms has also been emphasized. Keeping in
view the complexity of the dynamics terms, the com-
puter implementation of all the complex spatial op-
erators has been described in detail. In addition to
this, it has been shown that the linear separability as-
sumptions for deriving unified models of the under-
actuated systems may not be valid in general. In con-
trast to this, the unified formulations discussed in this
paper do not include any such assumptions, rather it
has been derived from the first principles of mechan-
ics.

APPENDIX A: UNIFIED DYNAMIC MODEL BASED
ON LINEAR SEPARABILITY CONCEPT

The initial work of Jain and Rodriguez,7 to model un-
deractuated manipulators, serves as the major basis

of the unified model described by Yoshida and
Nenchev.4 The basic concept of Jain and Rodriguez
was that any underactuated manipulator system
could equivalently be represented by one active and
one passive arm. The active arm is a manipulator sys-
tem assumed to be consisting of only active joints by
freezing all the passive joints. Similarly, the passive
arm results by freezing all the active joints.

Now, consider an underactuated manipulator
system with n(5na1np) joints and dap degrees of
freedom with da the degrees of freedom of active
joints and dp the degrees of freedom of all passive
joints. Here na and np denote the number of active
and passive joints. Then define q̇aPRda, TaPRda, and
FaPR6n3da as the active joint velocities, torques and
joint map matrix for the active arm. Further, define
these quantities for the passive arm as q̇pPRdp, Tp
PRdp and FpPR6n3dp. Then, q̇a /q̇p , Ta /Tp and
Fa /Fp are the decompositions of q̇, T̂, and F, respec-
tively. The equations of such system is expressed as

F Ma Map

Map
T Mp

G F q̈a

q̈p
G1FCa

Cp
G5FTp

Ta
G , (A1)

where MaPRda3da, MpPRdp3dp, and MapPRda3dp are
the mass matrices of active arm, passive arm and
their interactions, respectively; and Ca and Cp are the
active and passive coriolis and centrifugal forces of
the active and passive arms, respectively. All these
matrices are defined as follows:

Ma5Fa
TXTMqXFa , (A2a)

Mp5Fp
TXTMqXFp , (A2b)

Map5Fa
TXTMqXFp , (A2c)

Ca5Fa
TXT~b1MXa!, (A2d)

Cp5Fp
TXT~b1MXa!. (A2e)

Here, all the terms are as defined in the main text ex-
cept a, which defines the bias terms in the link accel-
eration.

Yoshida and Nenchev4 extended these concepts
to include end-effector forces and expounded the
generality features of the model for a wide variety of
manipulator configurations. The equations of motion
with end-effector forces fe can be represented as
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F Ma Map

Map
T Mp

G F q̈a

q̈p
G1FCa

Cp
G5FTp

Ta
G1F Jp

T

Ja
TGfe , (A3)

where Ja and Jp are the decompositions of the Jaco-
bian J that maps fe onto the active and passive joints.

The end-effector velocity is given by

Ve5Jaq̇a1Jpq̇p . (A4)

Then, the end-effector acceleration is expressed as

V̇e5Jaq̈a1 J̇aq̇a1Jpq̈p1 J̇pq̇p (A5)

Now, Eq. (A3) can be represented by the following
equations:

Maq̈a1Map
T q̈p1Ca5Ta1Ja

Tfe , (A6)

Mpq̈p1Map
T q̈a1Cp5Tp1Jp

Tfe . (A7)

Then, the passive co-ordinate acceleration vector q̈p
from Eq. (A7) can be written as

q̈p52Mp
21~Map

T q̈a1Cp2Tp2Jp
Tfe!. (A8)

Substitution of Eq. (A8) into (A6) yields

Mq̈a1C5T̂1JTfc , (A9)

where

M5Ma2Map
T Mp

21Map ,

J5Ja2JpMp
21Map ,

C5Ca2Map
T Mp

21Cp ,

T̂5Ta2Map
T Mp

21Tp .

The passive component transformation factor
Map

T Mp
21 is known as the dynamic coupling expression.

Now, the end-effector acceleration in Eq. (A5) by
using Eq. (A8), yields

V̇e5~Ja2JpMp
21Map!q̈a1 J̇aq̇a1 J̇pq̇p

2JpMp
21~Cp2Tp2Jp

Tfe!

5Jq̈a1 z̈ , (A10)

where the nonlinear acceleration z̈ can be computed
from a model or measurements.

APPENDIX B: DERIVATION OF THE COEFFICIENTS
IN THE TEXT

B.1. Coefficients of Eq. (28)

As shown in the text, the inverse dynamics equation
was obtained by multiplying FT to both sides of Eq.
(27):

FTf2FTXT$Mq2MqXb~Mb

1Xb
TMqXb!21Xb

TMq%Mq
21Dfe

5FTXT$Mq2MqXb~Mb

1Xb
TMqXb!21Xb

TMq%$XFq̈1ẊbVb

1Mq
21b1XbMb

21~fb2bb!1ẊFq̇%. (B1)

Now, Eq. (B1) produces the final inverse dynamics
equation:

T̂2JTfe5Mq̈1C. (B2)

Then, equating term by term all the terms of Eqs. (B1)
and (B2) yields

M5FTXT$Mq2MqXb~Mb1Xb
TMqXb!21Xb

TMq%XF,
(B3)

JT5FTXT$Mq2MqXb~Mb1Xb
TMqXb!21Xb

TMq%Mq
21D,

(B4)

C5FTXT$Mq2MqXb~Mb1Xb
TMqXb!21Xb

TMq%$ẊbVb

1Mq
21b2XbMb

21bb1ẊFq̇%, (B5)

T̂5FTf2FTXT$Mq2MqXb~Mb

1Xb
TMqXb!21Xb

TMq%XbMb
21fb . (B6)

The following lemma proves the expressions for the
coefficients of Eq. (B2) used in the text.

Lemma B1: Prove that

M5Ma2Map
T Mp

21Map , (B7)

JT5Ja2Map
T Mp

21Jp , (B8)
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C5Ca2Map
T Mp

21Cp , (B9)

T̂5Ta2Map
T Mp

21Tp , (B10)

where Ma5FTXTMqXF, Map
T 5FTXTMqXb , Mp

5Mb1Xb
TMqXb , and Map5Xb

TMqXF, Ja5FTXTD,
Jp5Xb

TD, Ca5FTXTb1FTXTMqẊFq̇, Cp5Xb
T(b

1MqẊFq̇)2(MbXb
21ẊbVb2bb), Tp5fb , and T5Ta

5FTf.
Proof: The expressions for M in Eq. (B7) and JT in

Eq. (B8) can directly be obtained by expanding Eqs.
(B3) and (B4), respectively.

Then, the expression for C can be obtained from
the following subexpressions:

Map
T Mp

21MbXb
21ẊbVb

52Map
T Mp

21~Xb
TMq2MpXb

21!ẊbVb (B11)

2Map
T Mp

21bb5Map
T Mp

21~Xb
TMqXb2Mp!Mb

21bb .
(B12)

Now, expand Eq. (B5), and use Eqs. (B11) and (B12) to
obtain

C5Ca2Map
T Mp

21~Xb
Tb1Xb

TMqẊFq̇

2MbXb
21ẊbVb1bb!

5Ca2Map
T Mp

21Cp .

Then, the expression for T̂ in Eq. (B10) can be ob-
tained from the following relationship:

Map
T Mp

21fb5Map
T Mp

21~Mp2Xb
TMqXb!Mb

21fb .
(B13)

Now, use Eqs. (B13) in Eq. (B6) to get Eq. (B10).

B.2. Disturbance Jacobian Matrix

The following lemma proves the expressions for the
disturbance Jacobian matrix given in the text.

Lemma B2: Prove the following relationship

JD5Mp
21Map . (B14)

Proof: The proof of JD can be as given below:
From Eqs. (26) and (38) it is clear that

JD5Mb
21Xb

TGXF, (B15)

where G5(Mq
211XbMb

21Xb
T)215Mq(E

1XbMb
21Xb

TMq)21.
Now, expansion of Eq. (B15) can yield

JD5Mb
21Map2Mb

21Xb
TMqXbMp

21Map5Mp
21Map .

APPENDIX C: FLEXIBLE MANIPULATOR SYSTEMS

C.1. Flexible-Base Manipulator Systems

Consider a flexible-base manipulator system, whose
base is constrained by a flexible-beam or a spring and
damper (visco-elastic) system. The end-effectors are
also subject to external forces. This flexible-base ma-
nipulator system can be expressed by the following
system of equations:

T̂2JTfe5Mq̈1C, (C1)

Ve5JbVb1Jqq̇, (C2)

V̇e5WV̇o1ẆVo5JbV̇b1Jqq̈1 J̇bVb1 J̇qq̇, (C3)

MoV̇o1bo5WTfe , (C4)

where T̂5Ta2Map
T Mp

21Tp , Tp5fb is the base con-
straint force.

Usually, in the constraint force fb can be repre-
sented as

fb52dbẋb2sbDxb , (C5)

where db is the damping factor, sb is the spring factor,
and Dxb is the base displacement from the equilib-
rium position due to its elasticity.

C.2. Flexible-Arm Manipulator Systems

An approximate modeling of a flexible-link can be ob-
tained by a successive chain of a finite number of vir-
tual elastic joints. This formulation satisfies to the fea-
tures of an underactuated system. Thus, this allows
the use of a unified model formulated in the text to
represent a flexible-arm manipulator system. The
equations of motion of a flexible-arm system can be
represented as

T̂2JTfe5Mq̈1C, (C6)
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Ve5JbVb1Jqq̇, (C7)

V̇e5WV̇o1ẆVo5JbV̇b1Jqq̈1 J̇bVb1 J̇qq̇, (C8)

MoV̇o1bo5WTfe , (C9)

where T̂5Ta2Map
T Mp

21Tp , Tp5fb is the force re-
quired to deflect the flexible joints, and Vb represents
the time rate of change of elastic deflections of the
flexible links.

Now, the force of elastic deflection fb can be rep-
resented in terms of the stiffness (sb) and damping
(db) matrices as:

fb52dbẋb2sbDxb (C10)

where Dxb is the elastic displacement from the equi-
librium position due to its elasticity.
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