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Abstract

Employing Fourier transform technique we determine the availability of a maintained system under continuous moni-
toring and with perfect repair policy. We obtain closed-form expressions for the availability when the system has gamma
life distribution and the repair time is exponential. c© 1999 Elsevier Science B.V. All rights reserved
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1. Introduction

We consider systems which are maintained and repaired upon each failure. We study the availability of the
system; that is, the probability that the system is in the functioning state at any speci�ed time. Availability is
a measure of performance of the maintained system and is an important aspect of reliability theory. For an
excellent account on the subject see, for example, HHyland and Rausand (1994).
We assume that the system is under continuous monitoring. Each time the system fails a repair ensues and

(when the repair is completed) the system is restored back to a level equivalent to a new system. This is
known as the perfect repair model (see Barlow and Proschan, 1975). We also assume that the repair is not
instantaneous, rather repair takes a random amount of time.
Let F be the distribution of time to failure of the system and let G denote the repair time distribution.

Assume that F and G are independent and they have continuous densities f and g respectively, with support
on (0;∞). We are interested in the system availability A(t) at any speci�ed time t ¿ 0. It is well known that
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the limiting availability is

A(∞) := lim
t→∞A(t) =

MTTF
MTTF +MTTR

; (1.1)

where MTTF stands for mean time to failure and MTTR for mean time to repair. Some authors have taken
(1:1) as the de�nition of availability. See Sen and Bhattacharya (1986).
In the literature attempts have been made to �nd A(t) employing Laplace transform technique (see, for

example, Barlow and Proschan, 1975; HHyland and Rausand, 1994). But problems arise in inverting the
Laplace transform. Except in the case when the underlying distributions are exponential, this is a formidable
task.
In this paper we show that A(t), the exact availability of the maintained system at time t ¿ 0, can be

obtained by integrating the sum of residues of a complex-valued function which is analytic except at �nite
number of singularities.
In Section 2 we present the main result and in Section 3 we obtain exact expressions for A(t) when the

system life distribution is gamma and repair time is exponential.

2. Main result

Suppose that at time t = 0, a new system starts to function. It continues to function for a random time
T1 until the �rst failure occurs. A repair ensues immediately and the repair is completed in a random time
D1 when the system is brought back to a condition as good as new and it starts to function again. The
process is repeated under exactly the same conditions. Assume that T1; T2; : : : are independent and identically
distributed (IID) random variables representing the successive times to failure with distribution function F
(with absolutely continuous density f); and D1; D2; : : : are IID random variables representing the corresponding
repair times with distribution function G (with absolutely continuous density g). Assume also that the times
to failure are independent of the repair times.
Let the state of the system be denoted by a random indicator process X (t). We write X (t)=1 if the system

is functioning at time t and X (t) = 0 if it is under repair at time t. The availability at time t is de�ned as
A(t) = P[X (t) = 1], the probability that the system is in the functioning state at time t.
To state the main result, the following notations and de�nitions are needed. Let f̃ and g̃ be the Fourier

transform of f and g, respectively. Recall that the Fourier transform of a function y(t) on (−∞;∞) is a
complex valued function de�ned for any s ∈ (−∞;∞) by

ỹ(s) :=
∫ ∞

−∞
eisty(t) dt; (2.1)

where i =
√−1 denotes the imaginary unit. De�ne for z ∈ C,

ct(z) := e−itzf̃(z)
1− g̃(z)

1−f̃(z)g̃(z) : (2.2)

Theorem 2.1. Suppose that ct(z), as de�ned in (2.2), is analytic except for isolated singularities z1; : : : ; zk in
the lower half plane (LHP). Then the availability at time t ¿ 0 of a system with arbitrary life distribution F
(with absolutely continuous density f ) and arbitrary repair time distribution G (with absolutely continuous
density g) is given by

A(t) = 1−
∫ t

0
b(u) du;
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where

b(t) =−i
∑
zj∈LHP

Reszj ct(z) (2.3)

with Reszj ct(z) being the contour integral of ct(z) along a counterclockwise circle with center zj and radius
small enough to include no other singularity.

Proof. Let B(t) = 1− A(t) = P[X (t) = 0] denote the probability that the system is in the repair state at time
t. Under the perfect repair model, we can express B(t) satisfying the following integral equation:

B(t) = P[X (t) = 0]

= P[T16t ¡T1 + D1] + P[Xt = 0|T1 + D16t]

= {P[T16t]− P[T1 + D16t]}+
∫ t

0
P[Xt = 0|T1 + D1 = x] dH (x)

= F(t)− H (t) +
∫ t

0
B(t − x) h(x) dx; (2.4)

where H (h) denotes the distribution (density) function of T1 + D1. Clearly, h is the convolution of f and g
de�ned by

h(x) :=
∫ x

0
f(x − u)g(u) du; (2.5)

so that its Fourier transform is h̃(s) =f̃(s)g̃(s).
Notice that h(t)=0 for t ∈ (−∞; 0); also we can de�ne B(t)=0 for t ∈ (−∞; 0]. Hence, the domain of the

integral in (2.4) may be extended over the entire real line. Taking the derivative with respect to t in (2.4),
and writing b(t) = B′(t), we have

b(t) = f(t)− h(t) +
∫ ∞

−∞
b(t − x)h(x) dx: (2.6)

By taking Fourier transforms on both sides of (2.6), we get

b̃(s) =f̃(s)− h̃(s) + b̃(s)h̃(s)
whence

b̃(s) =
f̃(s)− h̃(s)
1− h̃(s) =f̃(s)

1− g̃(s)
1−f̃(s)g̃(s) : (2.7)

Next, by the inversion formula, we recover b(t) as

b(t) =
1
2�

∫ ∞

−∞
e−itsb̃(s) d s

=
1
2�

∫ ∞

−∞
e−itsf̃(s)

1− g̃(s)
1−f̃(s)g̃(s) d s

=
1
2�

∫ ∞

−∞
c(s) d s: (2.8)

Since ct(z) is analytic in a domain that includes the real axis and all of the lower half plane (LHP), except at
isolated singularities z1; : : : ; zk ; applying Theorem 33 of Kaplan (1984, p. 631) and Cauchy’s Residue Theorem
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(see, for example, Kaplan, 1984, p. 619) we can write∫ ∞

−∞
c(s) ds=−2�i

∑
zj

Reszj ct(z): (2.9)

This completes the proof of the theorem.

Theorem 2.1 provides us with an alternative technique for �nding the availability of a maintained system
in a general set up. Thus the problem of �nding A(t) amounts to solving for the singularities of some analytic
function, which is likely to be easier than inverting a Laplace transform. In the next section we illustrate the
above method of �nding A(t) through some examples.

3. Some examples

Example 1. Suppose that T ∼ Exponential(�) and D ∼ Exponential(�). This case has been worked out in the
literature (see HHyland and Rausand, 1994, p. 309) using Laplace transform technique. Here we demonstrate
that Fourier transform technique also yields the same result. Note that in this case

f(t) = �e−�t ; t ¿ 0;

f̃(s) = (1− is=�)−1; −∞¡s¡∞;
g(t) = �e−�t ; t ¿ 0;

g̃(s) = (1− is=�)−1; −∞¡s¡∞;
b̃(s) = (1 + �=�− is=�)−1; −∞¡s¡∞;
ct(z) = e−itz (1 + �=�− iz=�)−1; z ∈ C:

Here ct(z) has only one singularity at z1 =−i(�+ �), which is the solution to 0 = 1+ �=�− iz=�. Since ct(z)
is a rational function, by the rules of residue calculus, Resz1ct(z) = i�e

−itz1 . Now (2.3) yields

b(t) = �e−(�+�)t (3.1)

and hence

A(t) =
�

�+ �
+

�
�+ �

e−(�+�)t ; t ¿ 0: (3.2)

We note from (3.2) that A(∞) = �=(�+ �) as expected. Specializing to the case when �= �, we have
A(t) = 1

2 +
1
2e

−2�t ; t ¿ 0: (3.3)

Example 2. Suppose that T ∼ Gamma(p; �) and D ∼ Exponential(�). We consider the two cases (a) � = �
and (b) � 6= � separately,
Case 2a. �= �. Note that in this case

f(t) =
�p

�(p)
e−�t tp−1; t ¿ 0;

f̃(s) = (1− is=�)−p; −∞¡s¡∞;
g(t) = �e−�t ; t ¿ 0;

g̃(s) = (1− is=�)−1; −∞¡s¡∞;



J. Sarkar, G. Chaudhuri / Statistics & Probability Letters 43 (1999) 189–196 193

b̃(s) =
−is=�

(1− is=�)p+1 − 1 ; −∞¡s¡∞;

ct(z) = e−itz
−iz=�

(1− iz=�)p+1 − 1 ; z ∈ C:

Here ct(z) is of the form 0=0 at z0 = 0. In fact, one can simplify the expression to avoid this di�culty since
z appears as a factor in both the numerator and the denominator of ct(z). Thus, the residues of ct(z) need
to be calculated only at the non-zero singularities. Note that ct(z) has p non-zero isolated singularities at
zj=−i�(1−�j), for j=1; : : : ; p; where �0 =1; �1; : : : ; �p are the (p+1)th roots of 1. In fact, �j=[ei2�=(p+1)] j.
Also note that z1; : : : ; zp are in the LHP. Since ct(z) is a rational function, by the rules of residue calculus,

Reszj ct(z) = e
−itzj (−izj=�)

(−i=�) (p+ 1)(1− izj=�)p

=−i �
p+ 1

(1− �j)�je−�(1−�j)t :

Hence, (2.3) yields

b(t) =− �
p+ 1

p∑
j=1

(1− �j)�je−�(1−�j)t : (3.4)

Next, using the fact that 1 + �1 + · · ·+ �p = 0, we have

A(t) =
p

p+ 1
− 1
p+ 1

p∑
j=1

�je−�(1−�j)t ; t ¿ 0: (3.5)

Note from (3.5) that A(∞) = p=(p+ 1) which agrees with (1.1), since MTTF=p=� and MTTR=1=�.
Specializing to the case when p= 1, and hence �1 =−1, we get back the same result as in (3.3). For the

case p=2, we have �1 = ei2�=3 = (−1+ i
√
3)=2 and �2 = e−i2�=3 =−(1 + i√3)=2; and so z1 =−�(√3+ i3)=2

and z2 =−�(−√
3 + i3)=2 are in the LHP; and

A(t) = 2
3 − 2

3 e
−3�t=2 cos (2�=3 +

√
3�t=2)

= 2
3 +

1
3e

−3�t=2[ cos (
√
3�t=2) +

√
3 sin (

√
3�t=2)]: (3.6)

For the case p=3, we have �1 = i; �2 =−1; �3 =−i. Consequently, z1 =−�(1+ i); z2 =−i2�; z3 = �(1− i)
are in the LHP; and

A(t) = 3
4 +

1
4e

−2�t + 1
2e

−�t sin (�t): (3.7)

Fig. 1 depicts the availability when �= � and p= 1; 2; 3, given in (3.3), (3.6) and (3.7), respectively. As
anticipated, the availability increases as p increases (that is, as the system lifetime becomes stochastically
larger).
Case 2b. � 6= �. Note that in this case

f̃(s) = (1− is=�)−p; −∞¡s¡∞;
g̃(s) = (1− is=�)−1; −∞¡s¡∞;
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Fig. 1. System availability when � = � = 0:1 and (A) p = 1, (B) p = 2 and (C) p = 3.

b̃(s) =
−is=�

(1− is=�)p(1− is=�)− 1 ; −∞¡s¡∞;

ct(z) = e−itz
−iz=�

(1− iz=�)p(1− iz=�)− 1 ; z ∈ C:

Here also ct(z) is of the form 0=0 at z0=0. But, as in Case 2a, the residues of ct(z) need to be calculated only
at the non-zero singularities. Finding these non-zero singularities require �nding the zeroes of a polynomial
(over C) of degree p. Example 1 above already exhibited the method for p = 1. Below we illustrate the
method for p= 2.
Assume p= 2. In this case, ct(z) reduces to

ct(z) =−�2e−itz[z2 + i(2�+ �) z − � (�+ 2�)]−1:

Hence, the two non-zero isolated singularities of ct(z) are

z1 = 1
2 [− i(2�+ �) +

√
�(4�− �)] :=−i(l− k);

z2 = 1
2 [− i(2�+ �)−

√
�(4�− �)] :=−i(l+ k); (3.8)

where

l= �+ �=2 and k = (1=2)
√
�(4�− �):

Note that z1; z2 are in the LHP. Also note that z1 = z2 if and only if k = 0. The calculations for the residues
di�er depending on the value of k. We consider the following cases:
Case 2b(i). (4� 6= �). Here ct(z) has two simple poles at z1 6= z2 as given in (3.8) above; and

Reszj ct(z) = lim
z→zj

(z − zj) (−�2)e−itzj
(z − z1)(z − z2) :
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Fig. 2. System availability when (A) � = 0:1; � = 0:2; p = 1, (B) � = 0:1; � = 0:2; p = 2 and (C) � = 0:1; � = 0:4; p = 2.

Hence, by (2.3) we have

b(t) = �2
[
ie−itz1

z1 − z2 +
ie−itz2

z2 − z1

]
=
�2

k
e−lt sin(kt);

which is a real-valued function, since k is either purely real or purely imaginary and sin(iy) = i sinh(y) for
any real y. Hence, we have

A(t) =
2�

�+ 2�
+

�
�+ 2�

e−lt
{
cos(kt) +

l
k
sin(kt)

}
; t ¿ 0: (3.9)

Note that A(t) is also a real-valued function, since cos(iy) = cosh(y) for any real y. Also note that A(∞) =
2�=(�+2�) which agrees with (1.1), since MTTF=2=� and MTTR=1=�. Furthermore, specializing to the case
when �= �, we get back the same result as in (3.6).
Case 2b(ii). (4�=�). Here ct(z) has one double pole at z∗=−i3�; and by Cauchy’s Integral Formula (see,

Smith, 1974, p. 206)

Resz∗ct(z) =−�2 d
dz
(e−itz)|z=z∗ = i�2te−itz∗ :

Hence, (2.3) yields

b(t) = �2t e−3�t

and

A(t) = 8
9 +

1
9 (3�t + 1) e

−3�t ; t ¿ 0 (3.10)

which may also be obtained by letting k → 0 in (3.9). Finally, note that A(∞)=8=9 which agrees with (1.1),
since MTTF=2=� and MTTR=1=� = 1=(4�).
Fig. 2 depicts the availability when � 6= � and p=1 or p=2, given in (3.2), (3.9) and (3.10), respectively.

Again, as anticipated, the availability increases as p increases or as � increases.
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