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Abstract
The hazard rate model

r(t) = a if 0<t<T,
= A if 1<t<oo,

arises quite commonly in mechanical or biological systems,
which experience a high hazard rate early in their lifetime
due to infant mortality and then a constant or steady haz-
ard rate after the threshold time 7. In this paper, we use
the total time on test transform approach to estimate the
change point 7 and study its properties. We also compare
this estimator with available estimators using a simulation
study.

1 Introduction

In studies on hazard rates in Survival Analysis and Reliability studies,
it is often the case that initially the hazard rate is high and then after a
rapid or abrupt fall, it stabilizes at a lower value. If a treatment is given
to a patient and then “survival” up to a relapse or some other identified
episode is studied, then the patients who “survive” the initial shock of

*Received (revised version) : August 2002

199



200 Journal, Indian Statistical Association

a new treatment like chemotherapy will develop low hazard rates. A
similar situation in reliability problems has led to the so-called “burn-
in” techniques to screen out defective electrical or electronic items and
thus improve performance of the remaining items.

We may use the hazard rate change-point model (due to Matthew’s
and Farewell (1982)) in these situations, given by

' a if 0<t<r
’"(t)—{ﬁ i t>7 06,750 ° 1)

Here a > § indicates that the hazard rate moves from a high value to a
low value. This model can be used for situation where infant mortality
is quite high.

Recently Ghosh, Joshi and Mukhopadhyay (1998) studied the prob-
lem of estimating the change point in the hazard rate model (1.1) under

sample from model (1.1)-is unbounded. Ghosh, Joshi and Mukhopad-
hyay (1998) proved the boundedness of the likelihood under the con-
straint a > 3. However, they also observed that even though the
likelihood is bounded, it can still have a local maximum far to the right
of 7, at or near Maz(X;, Xy, --,X,), of magnitude comparable with
the global maximum. Hence, they emphasized the need for restricting
the likelihood estimates. They derive MMLE with an additional con-
dition that F(7) < 0.5. They also compare their estimates with other
existing estimates. :

Most of the estimators available in the literature have been derived
under the assumption that o > (3. However, there are situations in
which the failure rate is low in the beginning and after some age, the
failure rate stablizes at a higher value. For example, a manufactured
product, where the infant mortality is low, is likely to have less failure
rate in the beginning but after some age, fatigue sets in and the failure
rate becomes high and remain the same for the rest of its life. In these
situations, it is evident that a < . In this paper, we derive an estima-
tor for 7 which can be used even when a < S.
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In this paper, we derive the Total Time on Test (TTT) - Transform
corresponding to the model (1.1) and derive estimator for 7 on the
basis of the TTT - plot using the properties of TTT transform in such a
model and study its properties. In Section 2, we briefly discuss the TTT
- transform corresponding to the model (1.1) and derive an estiamtor
for 7 on the basis of TTT - Plot. In Section 3, we study asymptotic
properties of the estimator and in Section 4, we compare the estimator
with other existing estimators using a simulation study.

2 Estimation of 7 Using TTT-Transform

2.1 TTT-Transform

The TTT - Plot an empirical and scale invariant plot based on fail-
ure data, and the corresponding asymptotic curve, named the scaled
TTT - Transform were introduced by Barlow and Campo (1975) and
used for model identification purposes. Since then these tools have
proven to be very useful in several applications within reliability. The
TTT - Transform has also been found quite useful in theoretical appli-
cations such as looking for test statistics for particular purposes and
to study their power. They are also useful in practical applications
in analysis of ageing properties, maintenance optimization and also in
design of experiments (See Deshpande and Suresh (1990) and Bergman
and Klefsjo (1998)).

The scaled TTT - Transform of a life distribution F' is defined as

Yr(u) = (1/p) /0 " R(z)dz, 0<u<1

where R(t) = 1 — F(t) is the survival function, 4 < oo is the mean, and
h(t) = inf. {z: F(z) > t},0 <t < 1,h(0) = 0, is the inverse of the cdf
F.

It is well known that ¥g(u) = 4,0 < u < 1 for the exponential
distribution meaning that every exponential distribution G(t) = 1 —
exp(—At),t > 0 is transformed into the diagonal in the unit square
independently of the value of the failure rate A. '

Suppose that we have a complete ordered sample 0 = ¢(0) < ¢(1) < -
~ +++ < t(n) from a life distribution F' and corresponding TTT - statistics
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5= nt(1) + (n— 1)(8(2) = t(1)) + -+ (n = j + 1)(t(G) — t(j ~ 1)), § =
1,--+,n, (for convenience set Sy = 0), then the piece wise linear graph
¥, (t) obtained by joining the points (j/n,u;) where u; = S;/S,,j =
0,1,---,n is called the TTT - plot based on these observations. It may
be easily see that the TTT-Plot is an empirical version of scaled TTT -
transform. It is well known that TTT - plot converges with probability
one and uniformly to the scaled TTT - transform (see Langberg, et. al.
(1980)). .

Now, consider the change - point hazard rate model given in (1.1).
The corresponding survival function R(t) is given by

| exp(—at), O0<t<r
Lo { exp(—[at + Bt — 1)), t >

It may be noted that the corresponding life distribution F' is continuous
with mean

p=po/a+ (1 —po)/B < o0,

and inverse of the cumulative distribution function given by

h(t) = —In(1—1t)/a for t<py
7= lar +in(1 -1)]/B, for pp<t <1

with
po = F(7) =1 — exp(—ar).

The TTT-Transform ¥g(t) corresponding to the above model is given
by

| bet, 0<t<pg
‘I’F(t)“{ a+bit, pp<t<1 M

where by = l%a, a =2 b =5

Thus the TTT-Transform corresponding to model (1.1) is a two
phase linear function with change point py. It may be noted that a = 3
or 7 = 0 is equivalent to by = by (and hence a; = 0 or py = 0). The
TTT - Transform for-different values of the parameters are plotted in
Figures 2.1 and 2.2.
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. Figure 2.1 : TTT-plot with alpha=3,beta«1,tau=0.15
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2.2 Estimation of 7

Consider the estimation of 7 under the assumption a > 3. It may
be observed from the TTT - Transform that py is the point of maximum
of t — Up(t). This motivates the following estimator of 7:

# = F, (o),
where pp = ﬁ-, and k is such that
2dkn — A1~ dk10 = Max{2 < i <n—1:2din—di1:n—dit1in > €}
which is equivalent to _
Po=inf{0 <t < 1:¥,(t—1/n)+ Uu(t +1/n) — 2W,(t) > €.}

din=1/n—u;i=12,---,n and F,, is the empirical cdf of a sample
of size n from model (1.1).

As in the case of other estimators of 7 for this model (1.1) (see
Ghosh, Joshi and Mukhopadhyay (1998)) this estimator also picked up
local maximum far to the right of 7 in simulated experiments. Hence,
we restricted our estimation to models with F(7) < 0.5 (note that this
assumption has also been made in Ghosh, Joshi and Mukhopadhyay
(1998)). Under this assumption, we modify the estimator 7 as follows:

Forop = Min{F; (po), F,'(0.5)}. 2)

Remark 2.1 . The above estimator was derived under the assumption
that « > (8. The estimator can be modified by replacing d;, that
is appearing in the estimator with d;., = u; — i/n,i = 1,---,n when
a<p.

3 Consistency of 7.4

In this section, we show that 7., is strongly comsistent for 7. The
proof is based on the following result due to Langberg et. al. (1980)

Sup{0 <t <1:¥,(t)— ¥p(t)} >0 as. (1)
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Theorem 3.1. 7y 0p — T as.

Proof. We first show that iy — py a.s. Note that for sufficiently small
€ > 0 and for sufficiently large n,py + € — 1/n > py, hence using (3.1),
we have

Yalpo + € — 1/n) + Wa(po + €+ 1/n) — 2¥,(po + €)
= We(po+e—1/n) + ¥p(po +¢+ 1/n) — 2¥p(py + €) = 0.

Thus, for large n, ¥, (pp+€—1/n)+Wo(po+e+ l/n) -2, (po+¢€) <
€,. It may be noted that for any ¢t > po+¢, ¥, (t— 1/n) + ¥ (t +1/n) ~
2¥,(t) < €en which implies that py < pg + ¢, and hence-

Po<m+e) 51 @)

Now for suficiently small € >0 and for sufficiently large n,py — ¢ +
1/n < po, hence using (3.1)

Yo(po — € —1/n) + Wa(po — € + 1/n) — 2, (po — €)
=Wp(po—€—1/n)+¥p(pp—€+1/n) —2¥p(py —€) = 0.
Thus, for large n, ¥,,(pp—e—1/n)+¥,.(po—€+1/n) =2V, (py—¢€) <

€n- It may be noted that for any t < pg—¢, ¥, (t —1/n)+ ¥, (t+1/n)
2¥,,(t) < €, which implies that fy > py — ¢, and hence

P(fo>po—¢€) - 1. (3

~—

The relation (3.2) and (3.3) prove that py — po a.s. Now the consistency
of Tprop follows from the result that the inverse F;! of the empirical cdf
F,, converges uniformly and almost surely to F~!. Hence the proof.
Remark 3.1. In the above theorem, strong consistency of the estima-
tor was proved for the case a > 3. The proof in the case of a < 3 will
follow in a similar manner.

4 Comparison of Estimators

In this section, we compare the proposed estimator 7., with vari-
ous estimators proposed by Basu, Ghosh and Joshi (1988) and Ghosh,
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Joshi and Mukhopadhyay (1993) and Ghosh, Joshi and Mukhopadhyay
(1998). These estimators are given below:

Feenn = inf{t > 0:y,(t + hn) — Yn(t) < huAo + €n}
- Feeya = Inf{t > 0: —y,(t) —log(l — po) < Ao(&po — t) + €0}
inf{r > 0: —yn(t) + (1) Syalte) ﬂ
20 < X((F)Zty — ) + e} i <&
BGI2 =
fm otherwise
where y,(t) = —1log(F)n(t), Fa(t) being the empirical survival func-

tion, Ao is a least square estimate of the steady state hazard rate
based on k order statistics t([npo] + 1), -, t([np1]), (P0 < pr < 1)
and the corresponding y.(-) values, &, is the pp-th sample quantile,
h, = n~ Y4 ¢, = ecn~/?logn, and the range of the summation is from
[npo) + 1 to [np]. Also, 71 and 7, represent the posterior mode and
mean of 7 based on the prior given below:

1
(e, 8,7)=—, 0<a<7T<b<oo, 0<fB<f<La<ox.

af’

Table 4.1 gives the mean and the MSE (in parenthesis) of these es-
timators for various values of the parameters (a, 3, 7) computed across
1000 simulations of sample size n = 100 with ¢, = 0.05, h, = n=4,po =
0.5,p1 = 0.9,a = 0.05,5, = 0.05. The upper bound b of 7 is taken to
be minimum of {£,,,co/Bo}, where cg = —log(1l — po), po = 0.05. The
proposed estimator 7prp is computed with €, = 0.05.

From Table 4.1, it is clear that the proposed estimate 7.,y has very
less bias as compared to other estimators, however it has slightly higher
(though comparable) MSE.

Table 4.2, below, gives the mean and the MSE (in paranthesis) of
the estimator 7,.,p for various values (o, B,7) with @ < 8 computed
across 1000 simulations of sample size n = 100 with €, = 0.05.
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TABLE 4.1 COMPARISON OF ESTIMATORS WITH o >B
Mean and MSE of different estimates of +

(0.B.7) T 861 T ou i.(sj(gn T T, T prop

(3.20,010) | 0078140 [0.057305 | 0093246 | 0.102316 | 0.137540 109054
(0.012753) | (0.006746) | (0.001961} | (0.001961) | (0.0002129) | (0.0052)

(3.20,0.15) [ 0104874 ~ [ 0.077579 | 0111579 | 0.124717 [ 0.146290 | G.1574
(0.015100) | (0.009921) | (0.011182) | (0.002981) | (0.000555) | 0.0073)

(3.20.0.20) [0111652 | 0.095320 | 0.116434 | 0.151056 | 0.153734 [ 0.3075
(0.018660) | (0.015337) | (0.014677) | (0.004413) | (0.002565) | (0.0053)

(3.10,0.10) [00BBS46 | 0.083324 | 0.130174 | 0.100385 | 0.122847 | 0.1197
(0.009513) | (0.008579) | (0.026171) | (0.001143 | (0.004527) | (0.0043)
(3.1.0.0.15) 10123784 | 0108089 | 0.141962 | 0.145488 | 0957840 | 0.1523
(0.005938) | (0.005647) | (0.014854) | (0.001257) | (0.000774) | (0.0074)
(3.10.0.20) | 0172275 | 0.148868 | 0.170287 | 0.184891 | 0188625 | 0.21

(0.006420) | (0004280) | (0.006263) | (0.001023) | (0.000637) | (0.0077)

210,010 | 0066162 | 0075726 | 0.137726 | 0.118568 | 0.188621 | 0.1056
(0.012013) | (0.014784) | (0.239181) | (0.005721) | (0.011579) | (0.0044)

210,015 | 0105740 | 0094265 | 0.150268 | 0.143342 | 0.191047 | 0.1403
(0.013299) | (0013921} | (0.031041) | (0.003080) | (0.003816) | (0.0091)

210,020 [ 015371 0128155 | 0.170236 10201996 | 0231774 | 02233
(0.014977) | (0.014681) | (0.022642) | (0.004524) | (0.003046) | (0.0159)

(2705070 | 0078410 | 0142674 | 0.287965 | 0106296 | 0156738 | 51060
(0.006312) | (0.051890) | (0.194533) | (0.003670) | (0.009588) | (0.0037)

205015 | 0713983 [ 0145358 | 0256493 | 0.149228 | 0.173840 | 0.1520
(0.004772) | (0.034068) | (0.118936) | (0.000833) | (0.002145) | (0.007)

205,020 | 0169569 | 0165469 | 0.256825 | 0.191345 | 0209548 | 0.2036
| (0009478) | (0.018590) | (0.067213) | (0.000978) | (0.001100) | (0.0128)
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Table 4.2 : Mean and MSE of different estimates of Tprop With

a < f.

Parameters 7=0.1 T=0.15 7 =020
a=2,06=3|.0892 (.0069) | 1486 (.0112) | .2054 (.0117)
a=1,0=3 .1008 (.01) | .1464 (.0155) | .1856 (.0184)
a=1,F=2/.1023 (.0116) | .1476 (.0208) | .1999 (.0215)
a=.50=2 1053 (.01) | .1416 (.0209) | .2065 (.0335)

5 Concluding Remarks

All the available estimators are derived under the assumption that o >
B. The proposed estimator compares well for the case of a > G, and
can be extended to the case of a < f. We have proved the strong
consistency of the estimator and further asymptotic properties of the
proposed estimator are being investigated.
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