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A New Approach to System Reliability

Gopal Chaudhuri, Kuolung Hu, and Nader Afshar

Abstract—Summary & Conclusions—Calculating system-re-
liability via the knowledge of structure function is not new.
Such attempts have been made in the classical 1975 book by
Barlow & Proschan. But they had to compromise with the
increasing complexity of a system. This paper overcomes this
problem through a new representation of the structure function,
and demonstrates that the well-known systems considered in
the state-of-art follow this new representation. With this new
representation, the important reliability calculations, such as
Birnbaum reliability-importance, become simple. The Chaudhuri,
et al. (J. Applied Probability, 1991) bounds which exploit the
knowledge of structure function were implemented by our simple
and easy-to-use algorithm for somes-coherent structuresyiz,s-se-
ries,s-parallel, 2-out-of-3:G, bridge structure, and a fire-detector
system. The Chaudhuri bounds are superior to the Min—max and
Barlow-Proschan bounds (1975).

This representation is useful in implementing the Chaudhuri
bounds, which are superior to the min—-max, Barlow & Proschan
bounds on the system reliability most commonly used in practice.
With this representation of the structure function, the compu-
tation of important reliability measures such as the Birnbaum
structural and reliability importance are easy.

The drawbacks of the Aven algorithm for computing system reli-
ability are that it depends on the initial choice of some parameters,
and can not deal with the case when the component survivor func-
tions belong to the IFRA class of life distributions.

When the components have IFRA life, then the Chaudhuri
bounds could be the best choice for the purpose of predicting
reliability of a very complex s-coherent structure. The knowledge
of some quantile of the component distributions is enough to
obtain the Chaudhuri bounds whereas in order to implement
by min—-max bounds, a complete description of the component
life distributions is required. The Barlow-Proschan bound is not
valid for the important part of the system life, and is point-wise.
The Chaudhuri bounds do fairly well for the useful part of the

when the components are exponentially distributed. Thus, the use

of Chaudhuri bounds is recommended for general use, especially OR

when cost and/or time are critical.

The C-H-A algorithm (in this paper) is simple and easy to use. C-H-A
It depends on the knowledge of the path sets of a given structure. \TTE
Standard software packages are available (CAFTAIN, Hoyland & Cdf

Rausand, p 145, 1994) to provide the minimal path sets of any

s-coherent system. The C-H-A algorithm has been programmed St

in SAS, S-PLUS, and MATLAB. Different computer codes of the

algorithm are available on request from Prof. G. Chaudhuri. This 5,

method of predicting system reliability is under patent considera-

tion at Indiana University, USA. B (x)

Index Terms—Birnbaum measure of reliability importance, in-
creasing failure rate, structure function, system reliability.
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Definitions:

Relevant Component: Components irrelevant to the
structure® iff ®(x) is constant inz;; otherwise compo-
nent: is relevant to the structure.

s-Coherent System: A system is s-coherent if all of its com-
ponents are relevant, and if the structure function is in-
creasing in each argument.

Path Set: A set of components of a system, which by func-
tioning ensures that the system is functioning.

Minimal Path Set: A path set that cannot be reduced
without losing its status as a path set.

Cut Set: A set of components, which by failing causes the
system to fail.

Minimal Cut Set: A cut set that cannot be reduced without
losing its status as a cut set.

Birnbaum Reliability-Importance: A measure of reliability
importance of componerit

Jh(p)

ni) = 5

= h(1i,p) = h(0;, p).

Birnbaum Structural-lmportance: A measure of structural
importance of componerit

By = [h(1i,p) — h(0:. D)l m1, s
OR operation&): Performed with 2 binary numbers:

060=0,1960=001=1¢1=1.

; L . N Acronyms:
system life, and they coincide with the exact system reliability IERA

increasing failure rate, average
see OR operation iDefinitions
Barlow and Proschan
Chaudhuri, Hu, and Afshar
mean time to failure
cumulative distribution function
survival function

Notation:

number of components
(z1,...,z,): states of the components
system state

1, if system is working

0, otherwise

state of componernit

1, if component is working

0, otherwise

Pr{X; = 1}: component reliability
(P1---Pn)

Pr{®(x)}: system reliability

1The singular & plural of an acronym are always spelled the same.

0018-9529/01$10.00 © 2001 IEEE
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() (T1, 22, Ty Tigly e ey T the minimal path sets, &y, . .., K} denote the minimal cut
h(p) implies: components are mutualyindependent  sets.
I (i) Birnbaum reliability importance of component
By (4) Birnbaum structural importance of componént max [Pr {g?i}}[Xi] = 1H <Pr{®(X) =1}
F(t) system life Cdf == :
F(t) 1— F(t) < min [Pr {min[Xi] = 1}} .
rXc order of a matrixz, rows,c columns lsjsk ek
If, in addition, thezx4, ..., z,, are associated, then

. INTRODUCTION

XACT evaluation of system reliability is extremely diffi- .« H p1| <Pr{®X)=1}< min L[ 'RE
cult and sometimes impossible. Once one obtains the ext=/=m | -7 ' o lsisk
pression for the structure function, the system reliability com- n
putations become straightforward. ]_[pi =1—(1-=p1) - (1—pp).
Attempts have been made to compute the exact system reli- —
ability of a complex system, for example, the algorithm [1] 'ﬁ'hes—independent r.v. are associated [2].

pased on m|n|maIICl.JF sets. The drawback this algorithm is that.l_heorem 3. Barlow-Proschan Bound [2L-et F be IFRA
it depends on the initial choices of 2 parameters. The usual aps )
ith meany, and lett > 0 be fixed.

proach is to resort to bounds on system reliability [2].

=" |i<izk

This paper obtains a representation for the structure function P < 1, fort < p
of a s-coherent system, which is suitable for computer imple- = lexp(—w-t), fort>
mentation. w>0, expl—~w-t)=1—w-t.

Section Il presents some definitions and known results.
Section Il describes the main algorithm.

Section IV— [ll. THE C-H-A ALGORITHM
a) illustrates the algorithm through some well-known struc- Notation:
tures such as series, parallelput-of-2:G, and a fire de- v vector of dimensiom
tector system, v element; of V:
b) computes some important reliability measures (Birn- 1, component is in minimal path set
baum’s structural and reliability importance), 0, otherwise
c) presents the Barlow & Proschan bound, the Chaudhuavi; the V corresponding to minimal path s¢t j =
bounds, and the min—max bounds; these bounds are im- 1,....,m
plemented for the structures mentioned in a; the Chaug- (Vi,...,V —m):n x m minimal path set matrix.
huri bounds have an edge over the others. Step 1) Identify the minimal path-sets of theecoherent
structure under study. Generdte
Il. SOME KNOWN RESULTS Step 2) Select the columns of the minimal path-set matrix
Let as-coherent system consist afs-independent compo- P in pairs and perform an OR operation on their re-
nents. If the life distributions of all these components are IFRA, spective rows. There afg’) such column combina-
then the system life distribution is also IFRA. tions. At. the end of each OR operation, the resultlng
Ref [3] obtained bounds on the reliability ofsacoherent column is appended t5, leading to the matrix:
system consisting afFindependent components with IFRA dis- (P, P.)
tributions. The bounds are stated in theorem 1. 7 ns(m(3))
Theorem 1. Chaudhuri Bounds:et F5(¢) have IFRA life In this operation, the order in which columns are
distributions andd < a < oo fori = 1,...,n, and let chosen is not important.
h [F(#),..., Fu(t)] denote the Sf of a-coherent system. Step 3) Repeat step 2, except take 3 columnB af a time
_ _ and do an OR operation on their respective rows. At
h[FL(E), ... Fu(t)] the end of this step, there will K&;) new columns
{ > b([Fu(a)]”" ... [Fu(@)]"®), fort<a to be appended taP, P;) and yield
= t/a = t/a
< h( [Fl(a)] sy [ n(a)] ), fort>a (P’ P, PQ)nX(m-I—(m)-i—(m))'
for0 < a < co andt > 0 SR
Step 4) Repeat step 2 takingi = 4, ...,m columns ofP
The elegance of this bound is that it is valid on the entire real at a time. In the very last step, ail columns ofP
line. The choice of: depends on the user’s specification. This will be OR’ed with each other, resulting in the design
bound exploits the knowledge of some quantile of the compo- matrix:
nent Cdf.
Theorem 2. Min-Max Bounds [2]Let ¢ be as-coherent D =P Pty Py Pty (e (7)) (7))
structure with state variables, . .., z,;letP,..., P, denote =(P, P, Ps,..., Py 1)nx2m—1)-
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Step 5) Construct a vectdr of 1's of dimension2™ —

whose:
first m elements are 1’s,
next E’;’; entries have signs-1)>=! = —1,
next("y) entries have signs-1)>~* = +1,

last entry has sigi—1)""1.

In general, the signs are determined according to
the rule(—1)"—*, wherei is the number of columns
of P that are taken at a time to be OR’ed in a partic-

ular step.
Step 6) Obtain the structure function of the system:
o) = > 1) [[«7"7,
j=1 i=1

D(i,j) = element(, j) of D,
1(j) = element;j of 1.

Step 7) Hence, the system reliability is:

2m—1 n
h(p) = Z 1(5) - Hp?(w)7 0<p <1
j=1 i=1

P = vector ofyp;.

7

! (1) [2)
N N

Fig. 1. Reliability block-diagram of the series structure.
Step 6.
1 2
. D(i,j
o (x) :Zl(y)-Hwi (3) = 1ozl al =2, 2o
j=1 =1

which agrees with (4-1).
To compute the exact system reliability and its bounds, values

for a, «, 3 are needed. The best candidatedas the mean life
of the system (MTTF):

o = MTTF = /Oo Ft)dt = /Oo RIEL(), .. Fa(t)]dt,

The values ofky;, 3; are given in the vectors for both compo-

(3-1) nents:

a=[1315], 8=[101.0].

This integral can only be solved numericakdg by the trape-
zoidal or Simpson rules. The following steps 1 — 10 not only
(3-2) compute the MTTF, but they dynamically change the upper

Since the minimal path sets uniquely determine Bound of the integral so that when the value of MTTF does not

s-coherent structure, then (3-1) is unique.

IV. |LLUSTRATIVE EXAMPLES

This section illustrates C-H-A through the followirggco-
herent structures: series, parallel, 2-out-of-3, and bridge. For
a practical application, a fire detector system is considered.step 3)
The Birnbaum reliability-importance of these systems are

calculated.

A. Series System

The series system (see Fig. 1) has-iadependent Weibull

components, with Sf

to
exp <— 7 ) , t=1,2.

The structure function of the system is:

(P(X) = X1T2.

The algorithm steps are:

Step 1. The system has 1 path set: 1,2.

Hence
1
P ( ) .
1 2x1

Step 2. There is 1 column in
the OR operation is not used.

D= G) 1=(1).

Step 3 — 5 are not necessary because
there is only 1 column in P.

P; hence

improve by more than a threshold, the integration stops.

Step 1) Setthe lower & upper limits of the integratio =

0 andt,;, = 1, respectively. Also set the stepsize
= 0.25, oldyyrrr = 0,6 = 0.001,¢ = 0.

Set the time slice for integration&a = (¢, —
0)/100.

Computei(t) = exp(—t*/3;) ,i
both components.

Use theF;(t) values asp and computeh(p)
from(3-2).

Save the current valueg@nd/(p) in two arrays,

x andh, respectively.

Reset = t 4+ At.

Ift < tw, then go to step 3; otherwise, go to step
8.

Numerically integrate to compute MTTF using the
x, h arrays; see step 5.

IfIMTTF — old MTTF| < §, then stop; other-
wise, go to step 10.

Step 10) Sebld MTTF = MTTF. Set the newt,, =
tu,~+ Stepsize; then go to step 2.

Once thex = MTTF is computed, thé array contains the
exact reliability function over the time interval from 0 to the last
value oft,y,.

To compute the reliability bounds, use the following steps
(slightly modified from the previous 10 steps).

Stepl) Set =0.

Step 2) Compute the values of

o

()]t = [exp (—E)r“, i—12

Step 3) Use théF;(a)]*/* values ap, and computé(p) as
in step 4.

tep 2)

1,2 for
Step 4)
Step 5)

Step 6)
Step 7)

Step 8)

(4-1)  Step9)
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Components reliability importance over time, Series System TABLE |
1o, T T T T COMPARISON OF THEEXACT SYSTEM RELIABILITY , CHAUDHURI, B-P,
— 1 AND MIN-MAX BOUNDS
09+ e- 2 M
\ Time Exact Bounds
0.8F b t reliability Min Max Chaudhuri B-P
0.0000 | 1.0000 | 1.0000 1.0000 1.0000 1.0000
o 07T ] 0.1125 | 09083 | 0.9083 0.9433 0.8370 1.0000
2 0.2250 | 0.7784 | 0.7784 0.8660 0.7005 1.0000
£ 06r 1 03375 | 06442 | 0.6442 07838  0.5863  1.0000
s 0.4500 | 0.5189 | 0.5189 0.7018 0.4907 1.0000
2057 ] 0.5625 | 0.4085 | 0.4085 0.6229 0.4107  0.9348
= 06750 | 03152 | 0.3152 0.5489 0.3438  0.6643
g 04y 1 07875 | 0.2389 | 02389 04804  0.2877 04724
L] | 0.9000 | 0.1780 | 0.1780 0.4181 0.2408  0.3451
: 1.0125 | 0.1307 | 0.1307 0.3610 0.2015 0.2574
02k i 1.1250 | 00945 | 0.0945 0.3032 0.1687  0.1950
' 1.2375 | 0.0675 | 0.0675 0.2524 0.1412  0.1497
o1k | 1.3500 | 0.0476 | 0.0476 0.2083 0.1182  0.1160
14625 | 00331 | 0.0331 0.1706 0.0989 0.0907
0 . . . . 1.5750 { 00228 | 0.0228 0.1385 0.0828  0.0714
0 0.5 1 L5 2 23 16875 | 0.0155 | 0.0155 0.1117  0.0693  0.0565
Time 1.8000 { 00104 | 0.0104 00894  0.0580  0.0449
19125 | 00070 | 0.0070 0.0710  0.0485 0.0359
Fig.2. Components 1 & 2 reliability-importanestime. The slight difference 2.0250 0.0046 0.0046  0.0560 0.0406 0.0287
between the 2 reliability-importance functions is due to the different values of  2.1375 0.0030 0.0030 0.0439 0.0340 0.0231
a. 2.2500 | 0.0019 [ 0.0019 00342 00285 0.0186
Step 4) SaVéL(p) in arrayb- MinMax, B-P, and Chaudhuri Reliability Bounds and Exact Reliability, Series System
Step 5) Reseat=t+ At; At is the same as that of the lates ! ' > Exattralabiity
iteration of MTTF computation. 0ot j min bt?undd k
Step 6) Ift < t,, go to step 2; otherwise, stop. 0sl o e ound |
The definitions of the variables are: P - B bound
.. . S 07F — -
pathset: minimal path-set matrix, 3
cutset: minimal cut-set matrix EO0Bf MTTF = 0.55403
D: design matrix, D Zosl
reliab: system reliability 2 0
alpha: shape parameter of the Weibull distribution T
beta: scale parameter of the Weibull distribution B 03¢
. . oy . . [¥al
last_t:ty, in the reliability calculation algorithm, the ool
largest value of at which the area under the exact relia
bility curve changes less than a very small amount. iy
The information from the computer printout for Matlab im- 0] e . 5 2 25
lementation of the algorithm is: 1, time
p g
pathset = Fig. 3. System reliability and various boundstime.
1
1 B. Parallel System
OUtlset 0: Fig. 4 shows a parallel structure witts2ndependent Weibull
0 1 components; the component Sf are
D 2
= exp | — 1=1,2.
1 o(-5 ). =t
1

The system structure-function is
alpha =[1.3 1.5]

beta=[1 1]
last_t = 2.25

(I)(X) =21 +To — X1 - Toa.

The system’s minimal path-sets &re}, {2}.

Fig. 2 plots the component-reliability importance as a func- Step 1. The P matrix is:
tion of time. Table I lists the values of exact system reliability p_(! 0
and its bounds at several time points. - <0 1>2X2
Fig. 3 compares the exact reliability function, Min—max tep 2:
bounds, B-P bound, and Chaudhuri’s bounds as a function ofs '
time. It shows that, for a series structure, the Max bound is the D <1 0 1)
same as the exact reliability. A0 1 1
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Cornponents reliability impartance aver time, Parallel System

79

. . . . e
0.9y -o- g
0.8F ]
07 .

Eo06r 1
,505. J
E 04t .
&

Fig. 4. Reliability block diagram of a parallel structure. 0.3r 1

02y R
Step 3: Because P has only 2 columns, 0.1 .
the D is given in step 2, and step 4 is ; , . ) . ‘ , ,
not necessary. 0 0.5 1 15 2 25 3 3.5 4
Step 5: 1=[1 1-1] Time
Step 6: Fig. 5. Components 1 & 2 reliability importanestime.
3
_ D(.5) _ D(1,1) _D(2,1)
_Z l_Iaj 1(1) -z} -z TABLE I
=1 i=1

+1(2) - 2PED L PED 4 q(3) . L POS) G DES)

=1-z7-294+1-20 23 +(=1) 21 - x5

=r1+ X2 — 1 - X2.

which agrees with (4-2).

Similarly, the Birnbaum reliability importance is computed
as in the series system, Fig. 5. Table Il lists the values of the
exact reliability and its various bounds at several time points.
The results of these computations are:

pathset =
1 0
0 1
outset =
1
1
D=
1 0
0 1

1

1

alpha =[1.3 1.5]
beta=[1 1]
last t =4

Fig. 6 compares various bounds with respect to the exact

liability. For the parallel structure, the Min bound is the same ¢
the exact reliability.

C. 2-out-of-3:G System

Consider a 2-out-of-3:G structure with &independent
Weibull components, Fig. 7, with $kp(—t*/3;),¢ = 1,2,3
. The system structure-function is:

(I)(X)I$1'$2+J}1'$3+$2'$3—2J}1'J}2'$3. (4'3)

The system has minimal path-se{s; 2}, {1, 3}, {2, 3}. Fig.

COMPARISON OF THEEXACT SYSTEM RELIABILITY , CHAUDHURI, B-P,
AND MIN-MAX BOUNDS

Time Exact Bounds
t reliability Min Max Chaudhuri B-P

0.0000 1.0000 1.0000  1.0000 1.0000 1.0000
0.2000 0.9901 0.9144 0.9901 0.9610 1.0000
0.4000 0.9414 0.7765 0.9414 0.8732 1.0000
0.6000 0.8504 0.6283 0.8504 0.7664 1.0000
0.8000 0.7308 0.4889  0.7308 0.6574 1.0000
1.0000 0.6004 0.3679 0.6004 0.5548 1.0000
1.2000 0.4745 0.2815 0.4745 0.4628 1.0000
1.4000 0.3628 0.2125 0.3628 0.3827 0.8161
1.6000 0.2697 0.1585 0.2697 0.3144 0.6186
1.8000 0.1958 0.1168  0.1958 0.2570 0.4760
2.0000 0.1393 0.0852 0.1393 0.2093 0.3723
2.2000 0.0975 0.0616  0.0975 0.1699 0.2950
2.4000 0.0673 0.0441 0.0673 0.1376 0.2363
2.6000 0.0460 0.0313  0.0460 0.1113 0.1910
2.8000 0.0311 0.0221 0.0311 0.0898 0.1555
3.0000 0.0209 0.0154 0.0209 0.0725 0.1274
3.2000 0.0139 0.0107 0.0139 0.0584 0.1050
3.4000 0.0093 0.0074  0.0093 0.0470 0.0869
3.6000 0.0061 0.0051 0.0061 0.0378 0.0722
3.8000 0.0040 0.0034  0.0040 0.0304 0.0602
4.0000 0.0027 0.0023  0.0027 0.0245 0.0503

MmMax 8-P, and Chaudhuri Reliability Bounds and Exact Rehabllny Parallel System
1 g

System Reliability and bounds

=
W
T

=
oo
T

o
-
T

2
m
T

o
8]
T

=
=N
T

=
w
T

=
[
T

o
T

Exact rnl|ah|l|tv
Min bound R
Max bound
- Chaudhuri bound |
B-F bound
MTTF

|+WM

MTTF = 1.2706

1, time

System reliability and various boundstime.
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/”i \ /7 2 \ Components reliability importance over time, 2-outof-3 System
07 T T - T
l\ —— l

-o- 2
06‘ —_ 3 g
0.5+ J
pe
{1 3}
o
£
z
£ 03} ; 1
3
K
[r'd
2 —(3 -
.
01 d
Fig. 7. Reliability block diagram of a 2-out-of-3 structure.
c i s i 1
o 0 0.5 1 LS 2 25
Step 1. The P matrix is: Time
1 1 0 Fig. 8. Components 1 — 3 reliability-importanestime.
P=|1 0 1
0 0 1
_ o TABLE Il
Steps 2 — 4: The final D matrix is: COMPARISON OF THEEXACT SYSTEM RELIABILITY , CHAUDHURI, B-P,

AND MIN-MAX BOUNDS

1 1. 0 1 1 1 1

_ Time Exact Bounds
D=1 01 1 1 11 t reliability | Min Max  Chaudhuri  B-P
oo 1 1 1 1 1/,. 00000 | 1.0000 | 1.0000 1.0000  1.0000  1.0000
0.1250 | 09943 | 0.9293 0.9972  0.9675  1.0000
Step 5: 1=[111-1-1-117] . 0.2500 | 0.9610 | 0.8027 09821  0.8916  1.0000
: . - 0.3750 | 08900 | 0.6581 09500  0.7958  1.0000
Step 6: The structure function is: 05000 | 0.7859 | 05162 09006  0.6945  1.0000
06250 | 0.6620 | 0.3891 0.8367  0.5960  1.0000
O(x) =1zt ad - aS+1 2t 2Y al+1. 2t 2l 2 0.7500 | 0.5332 | 0.2829 0.7624  0.5050  1.0000
0.8750 | 04120 | 0.1988 0.6822 04237  0.8994
+1-a) -2y a5 —1-2-a3 25— 1-2] -23 - 23 10000 | 03064 | 0.1353 06004 03526  0.6936
R R 11250 | 02201 | 0.0945 0508 02915  0.5367
—1l-zy-25-23—1-27 2523 1.2500 | 0.1531 | 0.0650 0.4218  0.2397  0.4221
13750 | 0.1034 | 0.0439 03430  0.1963  0.3364
=1 -T2+ 21 -3 + X2 T3— 2w - T2 - T3, 1.5000 | 00681 | 00293 02739  0.1601  0.2710
16250 | 00437 | 00192 02152 01301  0.2203
which agrees with (43) 1.7500 0.0275 0.0125 0.1664 0.1055 0.1804
18750 | 00169 | 0.0080 0.1270  0.0854  0.1487
2.0000 | 0.0102 | 00050 0.0956  0.0689  0.1232
) ) o 21250 | 00061 | 00031 00712 00555  0.1026
Fig. 8 shows the Birnbaum reliability-importance. Table 1lI 22500 | 0.0036 | 0.0019 0.0525  0.0447  0.0858
i ahili i ; 23750 | 00021 | 00012 00383 00359  0.0720
lists the values of the exact reliability and its various bounds at 55000 | 00012 | 00007 00277 00288 00606

several time points. The results of these computations are:

pathset =
1 1 0 MinMas, B-P, and Chaudhuri Relizbility Bounds and Exact Reliability, 2-out-of3 System
1 . . .
1 0 1 ki —& Exact reliability
09r ~¢  Min bound g
0 11 —+  Max bound
outset = osl -+~ Chaudhuti bound |
1 1 o —4— B-F bound
So7l — MTTF
1 0 1 2
0 1 1 D06 MTTF = 0.83756
o
el
D= Zosf
1 1 0 1 1 1 1 =
x 041
1 01 1 1 11 £
0 1 1 1 1 11 % 03
alpha =[1.3 1.5 1.7] n2f
beta=[1 1 17 01f
= 5 D :
last_t = 2.5 0 05 1 15 2 256
t, titme

Fig. 9 compares various bounds with respect to the exact re-
liability. Fig. 9. System reliability and various boundstime.
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®

N

Fig. 10. Reliability block diagram of the bridge structure.

D. Bridge System

The bridge structure hassindependent Weibull components
(see Fig. 10) with S£ exp(—t*/3;),i =1,...,5 . The struc-

ture function is:
(I)(x) =X T4+ T -Ts5+T1 T3 -T5+To Tz T4
T XL X2 Xy X5 — XL X3 T4 Ty
— X1 "L X3 -XLg—T1 Lo -X3-Tj

+ 221 %2 T3 - T4 T5-

The system has the minimal path séts4}, {2, 5}, {1,3,5},

{2,3,4}.

Step 1: The P matrix is:

1 0 1 O
0 1 0 1
P=10 0 1 1
1 0 0 1
0 1 1 0

Sx4
Step 2 — 4. See equation at the bottom
of the page.

Step 5: 1=[1111-1-1-1-1-1-1111 1-

17",
Step 6:
0 1

0 0 1 1

1 1 1 0 1
+ 1272923 -24-2c5+1 -2y 25 -3 -3

b(x)=1-at-ad a8 ot -2l +1-20 23 2% 2 2l

(Sl el

81

— X1 "X "Xz -y — X1 - T3z T
— X9 T3 T4 T +2T1 -T2 T3 Tqa-Ts

which agrees with (4-4).

The results of these computations are:

phathset=

1 01 0

01 0 1

0 0 1 1

1 0 0 1

0 1 1 0

cutset=

1 01 0

1 0 0 1

0 0 1 1

01 0 1

0 1 1 0

D = columsl — 12

1 01 01 1110111
01 0110111111
o 011 0 1 1 1 1 111
1 0011 1101111
011 011011111
colums13 — 15

[ N =
[ N =
[ N =

alpha = [1.3 1.5 1.7 2.1 2.3]'
beta=[11111]
last_t = 2.25

Fig. 11 shows the Birnbaum reliability-importance.

Table IV lists the exact reliability and its bounds at several
time points.

Fig. 12 compares various bounds with respect to the exact
reliability.

—1-ap-@y -y @y o= 1213237075 E e Detector System
1 1 1 1 0 1 1 1 0 1
-1 'xé xf xi’ x‘l*xi -1 xi xf xi’ x‘l* x; This pneumatic system is from [4]; it consists of 3 parts:
—1lexy-wy-wy-ay a5 — 1272523 -2y 23 heat detection, smoke detection, and a manually-operated alarm
+1-w7-25 25 2505 +1-21-x5-x5 -z -2 button. Fig. 13 is the system-reliability block diagram.
+1 37]{ a:% a::l), '37}; . xi +1 37% a:é a::l), 37}; xi _ In the heat-detection section, there is a circuit Wimide_n-
TR U T G tical f_use_ plugs, FP1, F_P2, FP3, FP4, which forces the air out of
Loz o3 e s the circuit if they experience temperatures more th&t€C7The
N R R B R ETe s PR R circuit is connected to a pressure switch (PS). The PS begins
— X1 T2 Ta Tz — T1 T3 Ta-Ts functioning when at least 1 of the plugs begins working, and
1 01 0 1 1 1 1 0 1 1 1 1 1 1
o 1 0 1 1 0 1 1 1 1 1 1 1 1 1
D=0 o0 1 1 0 1 1 1 1 1 1 1 1 1 1
1 o 0 111 1 0 1 1 1 1 1 11
o1 1 0 1 1 0 1 1 1 1 1 1 1 1
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Components reliability importance over time, Bridge System Minhax, B-P, and Chaudhuri Reliability Bounds and Exact Reliability, Bridge System
0.45 T T T T 1 T T T
—— 1 -~ Exact reliability
0.4 -e- 2|4 09 - Min bound g
' % ] —+£ Max bound
&+ 4 oe - Chaudhuri bound |J
0.35 - s I Y 4 — B-P bound
o7 — MTTF i
2 03 | E
£ T OB MTTF = 0.83778 .
% .25 E =
Z 02 ] 200
5 2oat
5 £
o 015 E 3 asl
2y
0.1 1 0.2r
0.05 g 01 -
il P e PN % 0
0 05 1 L5 2 z5 0 A 25
Time 1, time
Fig. 11. Components 1 — 5 reliability-importanestime. Fig. 12. System reliability and various boundstime.
2 3 4
M or | [ es |
TABLE IV or ms P

COMPARISON OF THEEXACT SYSTEM RELIABILITY , CHAUDHURI, B-P,
AND MIN-MAX BOUNDS

Time Exact Bounds
t reliability Min Max Chaudhuri B-P
0.0000 1.0000 1.0000 1.0000 1.0000 1.0000
0.1125 0.9978 0.9567  0.9979 0.9813 1.0000
0.2250 0.9845 0.8702  0.9864 0.9299 1.0000
0.3375 0.9505 0.7571 0.9615 0.8559 1.0000
0.4500 0.8870 0.6305 0.9223 0.7693 1.0000
0.5625 0.7910 0.5025 0.8702 0.6784 1.0000
0.6750 0.6680 0.3831 0.8080 0.5893 1.0000
0.7875 0.5316 0.2791 0.7388 0.5055 1.0000
0.9000 0.3978 0.1942 0.6659 0.4294 0.8590
1.0125 0.2802 0.1297 0.5876 0.3619 0.6759
1.1250 0.1862 0.0866 0.4725 0.3030 0.5370
1.2375 0.1173 0.0559  0.3638 0.2524 0.4324
1.3500 0.0702 0.0349 0.2682 0.2094 0.3519
1.4625 0.0402 0.0210 0.1895 0.1731 0.2891
1.5750 0.0220 0.0123 0.1285 0.1427 0.2393
1.6875 0.0116 0.0069 0.0837 0.1174 0.1993
1.8000 0.0059 0.0038 0.0525 0.0965 0.1670
1.9125 0.0029 0.0020 0.0317 0.0792 0.1406
2.0250 0.0014 0.0010 0.0185 0.0649 0.1189
2.1375 0.0006 0.0005 0.0104 0.0532 0.1009
2.2500 0.0003 0.0002  0.0057 0.0435 0.0859

[£]-

Fig. 13. Reliability block-diagram of the fire-detector structure.

transmits a signal to the start relay (SR) to produce an alar Companents reliability importance over time, Fire Detectar Systern
and thereby causing a system shut-down. 1.2 e

The smoke-detection section has 3 smoke detectors, SC
SD2, SD3, which are connected to a voting unit (VU) througl
a logical 2-out-of-3:G system. Thus at least 2 smoke detectc
must give a fire signal before the fire alarm is activated.

For the successful transmission of an electric signal fror
heat-detector and/or smoke-detector, the DC source must
working.

In the manual activation section, there is an operator OP, wi
should always be present. If the operator observes a fire, then
operator turns-on the manual-switch (MS) to relieve pressure
the circuit of the heat-detection section. This activates the F
switch, which in turn gives an electric signal to SR. Of course
DC must be functioning. )

The system has 8 minimal path-set§l,2,3,4,5}, 0 82 04 06 08 1 12 14 16 1F 2
{1,5,6,7,9}, {1,5,6,8,9}, {1,5,7,8,9}, {1,4,510}, e
{1,4,5,11}, {1,4,5,12}, {1,4, 5,13}. Fig. 14. Components 1 — 13 reliability importancgtime.

0.6

ODD ] ChoLh R WD L) e

0.4

Reliahility importance
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TABLE V Components reliability importance over time, Fire Detector System
COMPARISON OF THEEXACT SYSTEM RELIABILITY , CHAUDHURI, B-P, 1.2 T ¥ T v T T v T T
AND MIN-MAX BOUNDS — 1
-Q-
Time Exact Bounds | e g J
¢ reliability [ Min  Max  Chaudhuri  B-P N
0.0000 1.0000 1.0000 1.0000 1.0000 1.0000 "‘.. -+ 4
0.1000 0.9494 0.9215 0.9689 0.8723 1.0000 0.8} "\_ -+ 3 ]
0.2000 { 0.8536 | 07748 09144  0.7543  1.0000 o a6
0.3000 0.7327 0.6054 0.8485 0.6464 1.0000 2 - 7
0.4000 0.5989 0.4422 0.7765 0.5491 1.0000 b 06t -~ 8
0.5000 0.4640 0.3029 0.7022 0.4628 1.0000 8" - 9 ]
0.6000 0.3398 0.1950 0.6283 0.3872 0.6936 £ .-
0.7000 | 0.2347 | 0.1181 0.5567  0.3219  0.4946 = -
0.8000 0.1526 0.0673  0.4889 0.2662 0.3624 = 04f .
0.9000 0.0932 0.0362 0.4258 0.2189 0.2710 2
1.0000 0.0533 0.0183 0.3679 0.1793 0.2060 & —+
1.1000 { 0.0285 | 0.0091 0.3085 0.1462 0.1585 o2l
1.2000 0.0142 0.0043 0.2558 0.1189 0.1232
1.3000 0.0066 0.0019  0.2097 0.0963 0.0966
1.4000 0.0029 0.0008 0.1700 0.0778 0.0763 0
1.5000 0.0012 0.0003 0.1364 0.0627 0.0606
1.6000 0.0005 0.0001 0.1082 0.0504 0.0483
1.7000 0.0002 0.0000 0.0850 0.0404 0.0387

1.8000 0.0001 0.0000 0.0661 0.0324 0.0311
1.9000 0.0000 0.0000  0.0509 0.0259 0.0251
2.0000 0.0000 0.0000 0.0388 0.0207 0.0203

Fig
Since computing this system is involved & lengthy, only a

Time

.15. System-reliability and various boundstime.

partial printout is provided here. For example, thematrix 0 0
for this system hag&® — 1 = 255 columns. Fig. 14 shows the 1 0
Birnbaum reliability-importance. Table V lists the values ofthe 0 1
exact reliability and its bounds at several time points. The comd 0
putation-results are: 0 0
0 0
pathset = 0 0
11111111 0 0
1 0 00 00 0 O 11
1 0 00 00 0 O 11
1 0 00 1 1 11 11
11111111 11
01 1 0 0 0 0O alpha=1[1.51516161.717181.81.92.02.122 2.3]’
01010000 beta=[1111111111111]
0 011 0 0 0O
01110000 last-t =2
00001000 Fig. 15 compares various bounds with respect to the exact
000001200 reliability.
0 0000 0 10
0 00 0 0 0 01
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