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A New Approach to System Reliability
Gopal Chaudhuri, Kuolung Hu, and Nader Afshar

Abstract—Summary & Conclusions—Calculating system-re-
liability via the knowledge of structure function is not new.
Such attempts have been made in the classical 1975 book by
Barlow & Proschan. But they had to compromise with the
increasing complexity of a system. This paper overcomes this
problem through a new representation of the structure function,
and demonstrates that the well-known systems considered in
the state-of-art follow this new representation. With this new
representation, the important reliability calculations, such as
Birnbaum reliability-importance, become simple. The Chaudhuri,
et al. (J. Applied Probability, 1991) bounds which exploit the
knowledge of structure function were implemented by our simple
and easy-to-use algorithm for somes-coherent structures,viz,s-se-
ries,s-parallel, 2-out-of-3:G, bridge structure, and a fire-detector
system. The Chaudhuri bounds are superior to the Min–max and
Barlow-Proschan bounds (1975).

This representation is useful in implementing the Chaudhuri
bounds, which are superior to the min–max, Barlow & Proschan
bounds on the system reliability most commonly used in practice.
With this representation of the structure function, the compu-
tation of important reliability measures such as the Birnbaum
structural and reliability importance are easy.

The drawbacks of the Aven algorithm for computing system reli-
ability are that it depends on the initial choice of some parameters,
and can not deal with the case when the component survivor func-
tions belong to the IFRA class of life distributions.

When the components have IFRA life, then the Chaudhuri
bounds could be the best choice for the purpose of predicting
reliability of a very complex s-coherent structure. The knowledge
of some quantile of the component distributions is enough to
obtain the Chaudhuri bounds whereas in order to implement
by min–max bounds, a complete description of the component
life distributions is required. The Barlow-Proschan bound is not
valid for the important part of the system life, and is point-wise.
The Chaudhuri bounds do fairly well for the useful part of the
system life, and they coincide with the exact system reliability
when the components are exponentially distributed. Thus, the use
of Chaudhuri bounds is recommended for general use, especially
when cost and/or time are critical.

The C-H-A algorithm (in this paper) is simple and easy to use.
It depends on the knowledge of the path sets of a given structure.
Standard software packages are available (CAFTAIN, Hoyland &
Rausand, p 145, 1994) to provide the minimal path sets of any
s-coherent system. The C-H-A algorithm has been programmed
in SAS, S-PLUS, and MATLAB. Different computer codes of the
algorithm are available on request from Prof. G. Chaudhuri. This
method of predicting system reliability is under patent considera-
tion at Indiana University, USA.

Index Terms—Birnbaum measure of reliability importance, in-
creasing failure rate, structure function, system reliability.
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Definitions:

Relevant Component: Componentis irrelevant to the
structure iff is constant in ; otherwise compo-
nent is relevant to the structure.
s-Coherent System: A system is s-coherent if all of its com-
ponents are relevant, and if the structure function is in-
creasing in each argument.
Path Set: A set of components of a system, which by func-
tioning ensures that the system is functioning.
Minimal Path Set: A path set that cannot be reduced
without losing its status as a path set.
Cut Set: A set of components, which by failing causes the
system to fail.
Minimal Cut Set: A cut set that cannot be reduced without
losing its status as a cut set.
Birnbaum Reliability-Importance: A measure of reliability
importance of component:

Birnbaum Structural-Importance: A measure of structural
importance of component:

OR operation : Performed with 2 binary numbers:

Acronyms1 :
IFRA increasing failure rate, average
OR see OR operation inDefinitions
B-P Barlow and Proschan
C-H-A Chaudhuri, Hu, and Afshar
MTTF mean time to failure
Cdf cumulative distribution function
Sf survival function

Notation:
number of components

: states of the components
system state
1, if system is working
0, otherwise
state of component:
1, if component is working
0, otherwise

: component reliability

: system reliability

1The singular & plural of an acronym are always spelled the same.
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implies: components are mutuallys-independent
Birnbaum reliability importance of component
Birnbaum structural importance of component
system life Cdf

order of a matrix: , rows, columns

I. INTRODUCTION

EXACT evaluation of system reliability is extremely diffi-
cult and sometimes impossible. Once one obtains the ex-

pression for the structure function, the system reliability com-
putations become straightforward.

Attempts have been made to compute the exact system reli-
ability of a complex system, for example, the algorithm [1] is
based on minimal cut sets. The drawback this algorithm is that
it depends on the initial choices of 2 parameters. The usual ap-
proach is to resort to bounds on system reliability [2].

This paper obtains a representation for the structure function
of a s-coherent system, which is suitable for computer imple-
mentation.

Section II presents some definitions and known results.
Section III describes the main algorithm.
Section IV—

a) illustrates the algorithm through some well-known struc-
tures such as series, parallel,-out-of- :G, and a fire de-
tector system,

b) computes some important reliability measures (Birn-
baum’s structural and reliability importance),

c) presents the Barlow & Proschan bound, the Chaudhuri
bounds, and the min–max bounds; these bounds are im-
plemented for the structures mentioned in a; the Chaud-
huri bounds have an edge over the others.

II. SOME KNOWN RESULTS

Let a s-coherent system consist ofs-independent compo-
nents. If the life distributions of all these components are IFRA,
then the system life distribution is also IFRA.

Ref [3] obtained bounds on the reliability of as-coherent
system consisting ofs-independent components with IFRA dis-
tributions. The bounds are stated in theorem 1.

Theorem 1. Chaudhuri Bounds:Let have IFRA life
distributions and for , and let

denote the Sf of as-coherent system.

for

for
for and

The elegance of this bound is that it is valid on the entire real
line. The choice of depends on the user’s specification. This
bound exploits the knowledge of some quantile of the compo-
nent Cdf.

Theorem 2. Min–Max Bounds [2]:Let be as-coherent
structure with state variables ; let denote

the minimal path sets, let denote the minimal cut
sets.

If, in addition, the are associated, then

Thes-independent r.v. are associated [2].
Theorem 3. Barlow-Proschan Bound [2]:Let be IFRA

with mean , and let be fixed.

for
for ;

III. T HE C-H-A ALGORITHM

Notation:
vector of dimension
element of :
1, component is in minimal path set
0, otherwise
the corresponding to minimal path set,

minimal path set matrix.

Step 1) Identify the minimal path-sets of thes-coherent
structure under study. Generate.

Step 2) Select the columns of the minimal path-set matrix
in pairs and perform an OR operation on their re-

spective rows. There are such column combina-
tions. At the end of each OR operation, the resulting
column is appended to, leading to the matrix:

In this operation, the order in which columns are
chosen is not important.

Step 3) Repeat step 2, except take 3 columns ofat a time
and do an OR operation on their respective rows. At
the end of this step, there will be new columns
to be appended to and yield

Step 4) Repeat step 2 taking, columns of
at a time. In the very last step, all columns of
will be OR’ed with each other, resulting in the design
matrix:
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Step 5) Construct a vector of 1’s of dimension
whose:

first elements are 1’s,
next entries have signs ,
next entries have signs ,
...
last entry has sign .
In general, the signs are determined according to

the rule , where is the number of columns
of that are taken at a time to be OR’ed in a partic-
ular step.

Step 6) Obtain the structure function of the system:

element of

element of (3-1)

Step 7) Hence, the system reliability is:

vector of (3-2)

Since the minimal path sets uniquely determine a
s-coherent structure, then (3-1) is unique.

IV. I LLUSTRATIVE EXAMPLES

This section illustrates C-H-A through the followings-co-
herent structures: series, parallel, 2-out-of-3, and bridge. For
a practical application, a fire detector system is considered.
The Birnbaum reliability-importance of these systems are
calculated.

A. Series System

The series system (see Fig. 1) has 2s-independent Weibull
components, with Sf

The structure function of the system is:

(4-1)

The algorithm steps are:

Step 1. The system has 1 path set: 1,2.
Hence

Step 2. There is 1 column in ; hence
the OR operation is not used.

Step 3 – 5 are not necessary because
there is only 1 column in .

Fig. 1. Reliability block-diagram of the series structure.

Step 6.

which agrees with (4-1).

To compute the exact system reliability and its bounds, values
for are needed. The best candidate foris the mean life
of the system (MTTF):

The values of are given in the vectors for both compo-
nents:

This integral can only be solved numerically,eg, by the trape-
zoidal or Simpson rules. The following steps 1 – 10 not only
compute the MTTF, but they dynamically change the upper
bound of the integral so that when the value of MTTF does not
improve by more than a threshold, the integration stops.

Step 1) Set the lower & upper limits of the integral to
and , respectively. Also set the stepsize

, , , .
Step 2) Set the time slice for integration to

.
Step 3) Compute for

both components.
Step 4) Use the values as and compute

from(3-2).
Step 5) Save the current values ofand in two arrays,

and , respectively.
Step 6) Reset .
Step 7) If , then go to step 3; otherwise, go to step

8.
Step 8) Numerically integrate to compute MTTF using the

, arrays; see step 5.
Step 9) If , then stop; other-

wise, go to step 10.
Step 10) Set . Set the new

stepsize; then go to step 2.
Once the is computed, the array contains the

exact reliability function over the time interval from 0 to the last
value of .

To compute the reliability bounds, use the following steps
(slightly modified from the previous 10 steps).

Step 1) Set .
Step 2) Compute the values of

Step 3) Use the values as , and compute as
in step 4.
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Fig. 2. Components 1 & 2 reliability-importancevstime. The slight difference
between the 2 reliability-importance functions is due to the different values of
�.

Step 4) Save in array .
Step 5) Reset ; is the same as that of the latest

iteration of MTTF computation.
Step 6) If , go to step 2; otherwise, stop.
The definitions of the variables are:

pathset: minimal path-set matrix,
cutset: minimal cut-set matrix

: design matrix, D
reliab: system reliability
alpha: shape parameter of the Weibull distribution
beta: scale parameter of the Weibull distribution

in the reliability calculation algorithm, the
largest value of at which the area under the exact relia-
bility curve changes less than a very small amount.

The information from the computer printout for Matlab im-
plementation of the algorithm is:

Fig. 2 plots the component-reliability importance as a func-
tion of time. Table I lists the values of exact system reliability
and its bounds at several time points.

Fig. 3 compares the exact reliability function, Min–max
bounds, B-P bound, and Chaudhuri’s bounds as a function of
time. It shows that, for a series structure, the Max bound is the
same as the exact reliability.

TABLE I
COMPARISON OF THEEXACT SYSTEM RELIABILITY , CHAUDHURI, B-P,

AND MIN-MAX BOUNDS

Fig. 3. System reliability and various boundsvs time.

B. Parallel System

Fig. 4 shows a parallel structure with 2s-independent Weibull
components; the component Sf are

The system structure-function is

The system’s minimal path-sets are:, .

Step 1. The matrix is:

Step 2:
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Fig. 4. Reliability block diagram of a parallel structure.

Step 3: Because has only 2 columns,
the is given in step 2, and step 4 is
not necessary.
Step 5: .
Step 6:

which agrees with (4–2).

Similarly, the Birnbaum reliability importance is computed
as in the series system, Fig. 5. Table II lists the values of the
exact reliability and its various bounds at several time points.
The results of these computations are:

Fig. 6 compares various bounds with respect to the exact re-
liability. For the parallel structure, the Min bound is the same as
the exact reliability.

C. 2-out-of-3:G System

Consider a 2-out-of-3:G structure with 3s-independent
Weibull components, Fig. 7, with Sf ,
. The system structure-function is:

(4-3)

The system has minimal path-sets: , , .

Fig. 5. Components 1 & 2 reliability importancevs time.

TABLE II
COMPARISON OF THEEXACT SYSTEM RELIABILITY , CHAUDHURI, B-P,

AND MIN-MAX BOUNDS

Fig. 6. System reliability and various boundsvs time.
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Fig. 7. Reliability block diagram of a 2-out-of-3 structure.

Step 1. The matrix is:

Steps 2 – 4: The final matrix is:

Step 5: .
Step 6: The structure function is:

which agrees with (4.3).

Fig. 8 shows the Birnbaum reliability-importance. Table III
lists the values of the exact reliability and its various bounds at
several time points. The results of these computations are:

Fig. 9 compares various bounds with respect to the exact re-
liability.

Fig. 8. Components 1 – 3 reliability-importancevs time.

TABLE III
COMPARISON OF THEEXACT SYSTEM RELIABILITY , CHAUDHURI, B-P,

AND MIN-MAX BOUNDS

Fig. 9. System reliability and various boundsvs time.
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Fig. 10. Reliability block diagram of the bridge structure.

D. Bridge System

The bridge structure has 5s-independent Weibull components
(see Fig. 10) with Sf , . The struc-
ture function is:

(4-4)

The system has the minimal path sets: , , ,
.

Step 1: The matrix is:

Step 2 – 4. See equation at the bottom
of the page.
Step 5:

.
Step 6:

which agrees with (4-4).

The results of these computations are:

phathset

cutset

colums

colums

Fig. 11 shows the Birnbaum reliability-importance.
Table IV lists the exact reliability and its bounds at several

time points.
Fig. 12 compares various bounds with respect to the exact

reliability.

E. Fire-Detector System

This pneumatic system is from [4]; it consists of 3 parts:
heat detection, smoke detection, and a manually-operated alarm
button. Fig. 13 is the system-reliability block diagram.

In the heat-detection section, there is a circuit with 4s-iden-
tical fuse plugs, FP1, FP2, FP3, FP4, which forces the air out of
the circuit if they experience temperatures more than 72C. The
circuit is connected to a pressure switch (PS). The PS begins
functioning when at least 1 of the plugs begins working, and
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Fig. 11. Components 1 – 5 reliability-importancevs time.

TABLE IV
COMPARISON OF THEEXACT SYSTEM RELIABILITY , CHAUDHURI, B-P,

AND MIN-MAX BOUNDS

transmits a signal to the start relay (SR) to produce an alarm
and thereby causing a system shut-down.

The smoke-detection section has 3 smoke detectors, SD1,
SD2, SD3, which are connected to a voting unit (VU) through
a logical 2-out-of-3:G system. Thus at least 2 smoke detectors
must give a fire signal before the fire alarm is activated.

For the successful transmission of an electric signal from
heat-detector and/or smoke-detector, the DC source must be
working.

In the manual activation section, there is an operator OP, who
should always be present. If the operator observes a fire, then the
operator turns-on the manual-switch (MS) to relieve pressure in
the circuit of the heat-detection section. This activates the PS
switch, which in turn gives an electric signal to SR. Of course,
DC must be functioning.

The system has 8 minimal path-sets: ,
, , , ,

, , .

Fig. 12. System reliability and various boundsvs time.

Fig. 13. Reliability block-diagram of the fire-detector structure.

Fig. 14. Components 1 – 13 reliability importancevs time.
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TABLE V
COMPARISON OF THEEXACT SYSTEM RELIABILITY , CHAUDHURI, B-P,

AND MIN-MAX BOUNDS

Since computing this system is involved & lengthy, only a
partial printout is provided here. For example, thematrix
for this system has columns. Fig. 14 shows the
Birnbaum reliability-importance. Table V lists the values of the
exact reliability and its bounds at several time points. The com-
putation-results are:

Fig. 15. System-reliability and various boundsvs time.

Fig. 15 compares various bounds with respect to the exact
reliability.
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