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Abstract

We derive an inequality in terms of moments of Bivariate
IFR distributions. We then show that this inequality holds
good in a larger class of bivariate ageing distributions such

as NBU, NBUE and DMRL.
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1 Introduction

In this paper, we consider the “very strong” versions of bivariate Age-
ing distributions defined by Buchnan and Singpurwalla (1977). The
following classes are considered :

1. BIFR : A bivariate distribution F(z,y) with F(0,0) = 1 is said
to have Bivariate Increasing Failure Rate (BIFR) distribution if

F(z + u,y +v)/F(z,y)is non-increasing in z,y > 0 Yu,v > 0.
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2. BNBU : A bivariate distribution F(z,y) with F(0,0) = 1 is said
to have Bivariate New Better than Used (BN BU) distribution if

F(z+u,y+v) < F(z,y)F(u,v) V z,y,u,0>0.

3. BNBUE : A bivariate distribution F(z,y) with F(0,0) = 1 is
said to have a Bivariate New Better Used in Expectation (BN BUFE)
distribution if

oo po0 _ 00 oo
/ f F(z+u,y+v)drdy < F(u, v)f f F(z,y)dzdy ¥V u,v > 0.
o Jo . 0o Jo

4. BDMRL : A bivariate distribution F(z,y) with F(0,0) = 1 is
said to have a Bivariate Decreasing Mean Residual Life (BDMRL)
distribution if

f [ F(z+u,y+v)drdy/F(u,v) is non-increasing in u,v > 0.
o Jo

Here F(zr,y) = 1 — Fx(z) — Fy(y) + F(z,y) where Fx(z), Fy(y) are
the marginal distributions of X and Y respectively. The dual classes
of bivariate negative ageing distribution viz. BDFR, BNWU,

BNWUE, BIMRL may be obtained by replacing “non-increasing” by
“non-decreasing” and the inequality ” < ” by the inequality ” > . It
can be easily seen that the following chain of implications hold good
among the above classes of distributions :

F is BIFR = F is BNBU = F is BNBUE

pN 4
Fis BDMRL

In this paper, we denote 6, = E(XiY"),t' > 1, to represent the
product moments of (X,Y’). In Section 2 of this paper, we derive an
inequality in terms of moments for BIF'R distributions, and in Sec-

tion 3, we show that the same inequality holds good in the class of
BNBU,BNBUFE and BDM RL distributions also.
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2 Inequality in the Class of B/F'R Distri-
butions

Here, we derive a simple inequality in terms of the first two moments of
the product XY for BIFR distributions. First we state a useful lemma
(see Kotz, Balakrishnan and Johnson (2000) p. 399-400 for a proof of
the Lemma).

Lemma 2.1 : Let F be a bivariate distribution with F(0,0) = 1, which
is continuous with respect to both the arguments. Then

F(z +u,y+v) = F(z,y) F(u,v) V 2,9,u,v2 0 (1)

if and only if F(z,y) = e e ™™ ¥V z,y >0 for some A, pu> 0.
Theorem 2.1 : Let F be a BIFR distribution. Then 6, < 467 with
strict equality if and only if F is of the form F(z,y) = exp(—Az — uy)
for all z,y > 0 and for some A, u > 0.

Proof : Since F' is BIFR, by taking z, =z > 0,2, = 0,y = y >
- 0,y2 = 0, we have

"Ftr+u,y+v) < F(z,y)F(u,v) Yu,v > 0, z,y, 20.  (2)

For a bivariate distribution with (0,0) = 1, we have (see Barlow
and Proschan (1975), p. 135),

e o] (s o] .
E(X™Y™) =mn 2™ Wy F(z, y)dzdy (3)
o Jo

Consider
6, = E(X%*Y?) = 4/ / zyF(z,y)dzdy
0o Jo

= 4fomj)m£w£m?(x,y) dudvdzdy
= 4 /:w [m [m [mF($+u,y+'v) dudvdzdy. (4)
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Using (2.2) and (2.4), we get

o0 OO pOO OO _
0, < / f f / F(z,y) F(u,v) dudvdzdy — 4EX(XY) = 462. (5)
0 0 0 0

This proves the first part of the theorem.

Now, if F(z,y) = e ™ for some A > 0,u > 0, it can be easily
seen that 6, = 4/X1? 6, = 1/Au and hence 6, = 467 is attained. On
the contrary, suppose that 6, = 46? for a BIFR distribution. This
implies

4/000/;0/000[:0 [F(z + u,y +v) — F(z,y) F(u,v)] dudvdzdy =0 (6)

- In view of (2.2), (2.6) will hold if and only if
F(z +u,y+v) = F(z,y)F(u,v) Vz,y,u,v > 0 (7)

Proof of the second part of the Theorem now follows from Lemma
2.1.

3 Inequality of BNBU, BNBUE and
-~ BDMRL Classes

Theorem 3.1 : Let F be a Bivariate N BU distribution. Then 8, < 46?
with the strict equality if F(z,y) = e **~# for all z,y > 0 for some
Ap>0.

Proof : Since F is BNBU, we have

F(z +u,y+v) < F(z,9)F(u,v) Vz,y,u,v > 0. (1)

Note that (3.1) is the same as (2.2) of Theorem 2.1, which leads to the
inequality 6, < 46? and the corresponding result concerning the strict
equality.

Theorem 3.2: Let F' be a BNBUE distribution. Then 6, < 462.



Moments for Bivariate Ageing Distribution 135

Proof: Since F' is BNBUE, we have
00 00 _ oo poo __
[ [ Fa+uwy+v),dedy <Fuv) [~ [ Flaydedy. (2)
Integrating both sides of (3.2), we get
00 OO OO OO
/{: ./n f.;. fﬁ F(z +u,y +v) dudvdzdy < 6°. (3)

Note that

fgm ]:ﬂ f:o f:‘ F(z + u,y + v)dudvdzdy

/:Q fum f:: /:F"(J:,y)dudvd:cdy (4)
/'; ” [J " oyF(z, y)dzdy = 6,/4 (5)

Hence (3.3) becomes 6, < 49? as desired in the theorem.

Note 3.1 : The inequality 6; < 467 holds good in BDM RL class
as it is a smaller class as compared to BNBUE.

Note 3.2 : It can be easily seen that the reverse inequality holds
viz. 0 > 46? in the dual classes BDFR, BNWU,BNWUE and
BIMRL distributions.

Note 3.3: It is well known that in the class of univariate /FR
distributions F(X?) < 2(EX)? and that equality holds if and only if
F is exponential. This result has been used (see Doksum and Yandell
(1984)) to derive a test for Exponentiality against /F' R alternatives.
Similarly using Theorem 2.1, in this paper, one may derive tests for
F(z,y) = e”** " against Bivariate /F R alternatives.
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