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Abstract

Bayes estimators of different queueing performance measures are derived in steady state

by recording system size from each of n iid M/M/1 queues. The Bayes estimators are

obtained under both squared error loss function and precautionary loss function with a

bivariate distribution, Beta-Stacy as prior with natural restriction 0 < λ < µ where λ and

µ are arrival rate and service rate respectively. A comprehensive simulation results are also

shown at the last section.
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1 Introduction

Main purpose of queueing theory is to develop models to predict the behaviour of systems

that attempt to provide service for randomly arriving demands. Queues (or waiting lines) help

facilities or systems to provide service in an orderly fashion. Any conclusion about a waiting

line problem comes from analyzing the model representing the queue. The analysis is based

on building a mathematical model representing a process of arrival of customers who join the

queue, the rules by which they are allowed into service and the time it takes to serve the

customers. Queueing theory embodies the full gamut of such models covering all perceivable

systems which incorporate characteristics of a queue.

Plethora of practical applications, such as manufacturing and production systems, com-

munication and networking systems, transportation systems, healthcare systems and facility

design (banks, post offices, amusement parks, restaurants etc.) are often modeled as queueing

systems to investigate their operational performance such as queue lengths and waiting times.

Many performance measures of queueing systems are important indicators of their productivity

and also the critical dimensions of the service quality. These performance measures are often
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quantitatively estimated using corresponding queueing performance metrics (QPMs), such as

average queue length (Lq), average system length (Ls), average waiting time in system or mean

sojourn time (W ) and exceedance probability of queue length (F̄q) or waiting time in queue

(F̄w). Another important metric is traffic intensity (ρ) which is a measure of average occupancy

of a server or in other words probability of the server being busy during a specified duration of

time. It is expressed as the ratio of λ to µ.

Because of the stochastic nature of queueing systems, we generally assume completely spec-

ified distributions for the input variables in a queueing model namely interarrival time and

service time. Consequently, distributions of output variables like number present in the system

(system size), waiting time etc. are derived in terms of the given distributions of input variables.

In real life, the assumption of a particular form for the distribution of an input variable may be

justified from prior considerations, but numerical values of input parameters viz. arrival rate

(λ) and service rate (µ) of these distributions are not given to us. So, estimation of these input

parameters as well as corresponding QPM’s which are non random functions of these input pa-

rameters is essential for a better decision making. Estimation in queueing theory is carried out

by different researchers using both the maximum likelihood principle and the Bayesian method.

In the context of Bayesian estimation in Markovian or semi-Markovian queueing models,

many researchers [1-2, 3, 5, 6, 9, 11, 13, 18, 19] estimate λ, µ and other measures of per-

formance viz. traffic intnsity (ρ), no of customers in the system or avaerage system length

(Ls = λ/(µ−λ)) and mean sojourn time (W = 1/(µ−λ)) observing arrival and service times of

customers. There are other works [7, 14-16] where traffic intensity (ρ) is estimated recording the

queue length of a system. While in the former situation, λ and µ are considered independently

distributed and gamma distribution is taken as natural conjugate prior for the rate parameters,

beta distribution is chosen as prior distribution for ρ in the later situation.

McGrath and Singpurwalla [11] suggest the use of Bivariate Normal Distribution as a joint

prior in case of interdependence between λ and µ. Since both the parameters are positive quan-

tites, for a suitable joint prior distribution for describing the stochastic relationship between

the arrival and service rate parameters, they suggest the use of bivariate lognormal distribu-

tion.Their main emphasis is on establishing a qualitative relationship between the arrival and

service processes, as an increase in the arrival pattern may tend to cause an increase in the

service process. Therefore, they show the dependence using the correlation coefficient, without

using the ergodicity condition λ < µ.

We apply the ergodicity condition in the M/M/1 queueing model in this paper using beta-

Stacy distribution (satisfying the natural restriction λ < µ) as the joint prior for the Bayes

estimation of queueing parameters. In section 2, It is shown that the maximum likelihood

estimators (mle) of λ and µ do not exist, but that of ρ exists. Bayes estimators of QPM’s

along with corresponding risks [4] and 95% confidence intervals are obtained in section 3, using

beta-Stacy distribution [10, 12] as the joint prior under both SELF and PLF [17]. A detailed

simulation study is conducted in the last section. Sampling scheme of the present paper is to
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observe the states of a number of identical queues at any one selected point of time. Number

of customers present in each of n iid M/M/1/∞/∞ queueing systems [8] at a given point in

time under steady state is taken to constitute the sample.

2 Maximum Likelihood Estimation

Under the Markovian set up, inter-arrival and service time distributions are exponential and are

given as a(t) = λexp(−λt) and b(t) = µexp(−µt);λ > 0, µ > 0. The steady state distribution

of number of customers present in an M/M/1 queueing system [8] is given as

pr =

(
1− λ

µ

)(
λ

µ

)r
;

(
λ

µ
< 1

)
(2.1)

Let x1, x2, ..., xn be a random sample of size n with xi being number of customers present in

the ith queue, i = 1, 2, ..., n.Thus the joint distribution of x1, x2, ..., xn can be written as

f(x1, x2, ..., xn | λ, µ) =

(
λ

µ

)y (
1− λ

µ

)n
; y =

n∑
i=1

xi (2.2)

The likelihood function becomes

L(λ, µ | x1, x2, ..., xn) =

(
λ

µ

)y (
1− λ

µ

)n
(2.3)

with loglikelihood function given as

lnL(λ, µ) = y ln

(
λ

µ

)
+ n ln

(
1− λ

µ

)
. (2.4)

Loglikelihood equations ∂lnL
∂λ = 0 and ∂lnL

∂µ = 0 are not identifiable and hence do not yield mle’s

of λ and µ. Though, mle of ρ can be obtained solving both the equations and is computed as

ρ̂mle = y
n+y . Now, y =

∑n
i=1 xi ∼ NB(n, 1−ρ) with E(y) = nρ/(1−ρ) and var(y) = nρ/(1−ρ)2.

ρ̂ being a one-one function of y, takes values y
n+y , y = 0(1)∞ with p.m.f

P

(
Y

n+ Y
= u

)
= P

(
Y =

nu

1− u

)
=

( nu
1−u + n− 1

nu
1−u

)
(1− ρ)nρ

nu
1−u , u =

y

n+ y
(2.5)

yielding,

E(ρ̂) =
∞∑
y=0

[
y

(n+ y)

(
y + n− 1

y

)
(1− ρ)nρy

]
(2.6)

Now, for large n,

E(ρ̂) ≈ nρ/(1− ρ)

n+ nρ/(1− ρ)

= ρ (2.7)
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and

V ar(ρ̂) '
[
(
dρ̂mle
dy

)2V ar(Y )

]
E(Y )= nρ

1−ρ

=
n2

{n+ nρ/(1− ρ)}4
n ρ

(1− ρ)2

=
n2(1− ρ)4

n

nρ

(1− ρ)2

=
ρ(1− ρ)2

n
−→ 0 as n→∞ (2.8)

Therefore, ρ̂ is a consistent estimator of ρ. Hence for large values of n,

√
n(ρ̂− ρ)

σ

D→ N(0, 1) (2.9)

where

σ2 =

[
E(

δ

δρ
lnf(x1, x2, ..., xn))2

]−1
= ρ (1− ρ)2 (2.10)

As mle of the input parameters and the other QPM’s (except traffic intensity) do not exist in

the current set up, we go for Bayesian estimation which is discussed in the next section.

3 Estimation Using Beta-Stacy Distribution as Prior

In this section, we derive Bayes estimator of λ, µ and their non random functions viz. traffic

intnsity (ρ), average system length (Ls = λ/(µ− λ)) and mean sojourn time (W = 1/(µ− λ))

with one bivariate distribution viz. beta-Stacy taking observations on one random variable viz.

number of customers present in the system (at some point of time) from n identical queueing

systems. Thus our data correspond to system size and form an iid sample. Joint and Marginal

posterior distributions of λ and µ are worked out in the next subsection and hence Bayes

estimators of these queueing parameters along with their performance measures are obtained.

The joint prior distribution of λ and µ, known as beta-Stacy is given as

τ(λ, µ) =
| c |
Γα

1

aαc
1

B(θ1, θ2)
µαc−θ1−θ2λθ1−1(µ− λ)θ2−1e−(

µ
a
)c ; 0 < λ < µ , α, θ1, θ2 > 0, c ∈ <.

(3.1)

3.1 Joint and marginal Posterior Distribution of (λ, µ)

Posterior distribution of (λ, µ) given the sample (x1, x2, ..., xn) works out as

q(λ, µ | data) = k1µ
αc−θ1−θ2−y−nλθ1+y−1 (µ− λ)n+θ2−1 e−(µ/a)

c
, (3.2)
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where the normalising constant k1 is such that

k1

∫ ∞
0

∫ ∞
µ

q(λ, µ | data)dλdµ = 1, (3.3)

which gives

1

k1
=

∫ ∞
0

e−(µa )
c

µαc−θ1−θ2−y−n
(∫ µ

0
λθ1+y−1 (µ− λ)n+θ2−1 dλ

)
dµ

=
B (θ1 + y, n+ θ2) Γαaαc

| c |
. (3.4)

Marginal posterior density of λ and µ are given by

g1 (λ | data) =

∫ ∞
λ

q(λ, µ | data)dµ

=
| c | λθ1+y−1

B(θ1 + y, n+ θ2)Γαaαc

∫ ∞
λ

e−(
µ
a
)cµαc−θ1−θ2−y−n(µ− λ)n+θ2−1dµ

(3.5)

and

g2 (µ | data) =

∫ µ

0
q(λ, µ | data)dλ

=
| c−(

µ
a
)cµαc−θ1−θ2−y−n

B(θ1 + y, n+ θ2)Γαaαc

∫ µ

0
λθ1+y−1(µ− λ)n+θ2−1dλ

=
| c | e−(

µ
a
)cµαc−1

Γα
. (3.6)

3.2 Estimator under Squared Error Loss

Here we consider widely used loss function, the squared error loss function (SELF) which is

symmetric and is given by

L1(θ̂
B
S ) = (θ̂BS − θ)2

where θ and θ̂BS are parameter or parametric function and estimator under SELF respectively.

Minimizing Eθ|dataL1(θ̂
B
S , θ), i.e. solving

dEθ|dataL1(θ̂BS ,θ)

dθ = 0, we get

θ̂BS = Eθ|data(θ).

The Bayes estimator of λ, µ, ρ, Ls and W under SELF are derived as

λ̂BS = k1

∫ ∞
0

∫ ∞
0

e−(
λ+δ
a

)cλθ1+y (λ+ δ)αc−θ1−θ2−y−n δn+θ2−1dλdδ; (δ = µ− λ) (3.7)

µ̂BS =
aΓ
(
α+ 1

c

)
Γα

(3.8)

ρ̂BS =
y + θ1

y + θ1 + θ2 + n
(3.9)
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L̂s
B
S =

y + θ1
n+ θ2 − 1

;n+ θ2 > 1 (3.10)

and

ŴB
S =

Γ(α− 1
c )(θ1 + θ2 + y + n− 1)

aΓα(n+ θ2 − 1)
;α > 1/c. (3.11)

3.3 Estimator under Precautionary Loss Function

Most of the Bayes procedures are developed under the usual SELF which is symmetrical and give

equal importance to the losses due to overestimation and underestimation of equal magnitude.

There are situations where an underestimate is more serious than overestimate. In this case,

use of symmetrical loss function might be inappropriate and a useful asymmetric loss function

viz. precautionary loss function could be appropriate. This loss function is interesting in the

sense that a slight modification of squared error loss introduces asymmetry. The Precautionary

loss function (PLF) is given by

L1(θ̂
B
P ) =

(θ̂BP − θ)2

θ̂BS

where θ and θ̂BP are parameter or parametric function and estimator under PLF respectively.

Minimizing Eθ|dataL1(θ̂
B
P , θ), i.e. solving

dEθ|dataL1(θ̂BP ,θ)

dθ = 0, we get

θ̂BP =
(
Eθ|data(θ

2)
)1/2

.

The Bayes estimator of λ, µ, ρ, Ls and W under PLF are derived as

λ̂BP = k1

∫ ∞
0

∫ ∞
0

e−(
λ+δ
a

)cλθ1+y+1 (λ+ δ)αc−θ1−θ2−y−n δn+θ2−1dλdδ; (δ = µ− λ) (3.12)

µ̂BP =
ac+1Γ

(
α+ 1

c + 1
)

Γα
(3.13)

ρ̂BP =
(y + θ1 + 1)(y + θ1)

(y + θ1 + θ2 + n+ 1)(y + θ1 + θ2 + n)
(3.14)

L̂s
B
P =

(y + θ1 + 1)(y + θ1)

(n+ θ2 − 1)(n+ θ2 − 2)
;n+ θ2 > 2. (3.15)

The same Bayes estimator of ρ can be obtained using natural conjugate prior beta under both

SELF and PLF. Therefore, the use of beta-Stacy distribution as prior in case of dependence is

justified viz. one for its natural restriction and the other for the same Bayes estimator being

obtained as in the case of beta prior.

In the same way, Bayes estimator of W is given by

ŴB
S =

Γ(α− 2
c )(θ1 + θ2 + y + n− 1)(θ1 + θ2 + y + n− 2)

a2Γα(n+ θ2 − 1)(n+ θ2 − 2)
;α > 2/c, n+ θ2 > 2. (3.16)
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4 Numerical Results

4.1 Simulation Procedure

In this section, Bayes estimates are obtained under SELF and PLF for two choices of λ and µ.

For this purpose, a Monte-Carlo simulation has been carried out using R Software. The steps

are given as follows:

• Given (λ, µ) = (1.2, 6) and (4, 5), random samples of sizes n = 5, 20 and 50 are generated

from (2.2) from where y is obtained.

• Scale parameters a and α are respectively chosen as 2 and (2, 0.5) while shape parameter

c as (2,−2).

• The combinations of θ1 and θ2 are chosen as (4, 10, 15) and 3 respectively. As a special case

of beta-Stacy distribution, McKays Bivarite Gamma [10] is also used as prior distribution

choosing α = θ1 + θ2 and c = 1. With these chosen combinations of hyper-parameters

and sample size n, Bayes estimates (3.9-3.11) under SELF and (3.14-3.16) under PLF are

obtained with generated sum y.

• Steps 1-3 are repeated N (=10,000) times and average of all these estimates are taken to

yield the Bayes estimates as follows:

θ̂B =
N∑
i=1

θ̂Bi /N. (4.1)

The estimated risks corresponding to Bayes estimates under SELF and PLF are computed

as

R(θBS , θ) =
1

N

N∑
i=1

(
θ̂BSi − θ

)2
(4.2)

and

R(θBP , θ) =
1

N

N∑
i=1

(
θ̂BPi − θ

)2
θ̂BPi

(4.3)

respectively.

• 95% confidence interval of each of the parameters for the stated choices of hyper-parameters

and n is also obtained along with the estimates and the risks. For calculation of equal-

tailed confidence limits, 10,000 estimates of any parameter are arranged in increasing or-

der. Then from the ordered estimates, 10,000*0.025 = 250th and 10,000*0.975 = 9750th

estimates are taken as lower confidence limit and upper confidence limit respectively.
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Maximum likelihood estimates of ρ are shown in Table 1. Bayes estimates of the QPM’s are

shown in Table 2 and Table 3 under SELF and PLF along with the estimated risks (in ( )) and

95% confidence interval (in [ , ]).

Table 1. Maximum likelihood estimates of ρ

(λ, µ) n ρ̂mle MSE

1.2, 6 5 0.1737 0.0219

20 0.1912 0.0062

50 0.1963 0.0026

4, 5 5 0.7666 0.0118

20 0.7918 0.0019

50 0.7970 0.0007

Insert Table 2 and Table 3 here

4.2 Simulation Results

While Bayes estimates of average waiting time in the system depends on all the stated hyper-

parameters, those of traffic intensity and average system length depend on θ1 and θ2 only.

Observations from Tables 1, 2 and 3 are stated as follows:

• The ml estimates of ρ are very stable around the true value and corresponding errors also

diminish with large sample size.

• For given θ1, θ2, a, c, α and n, Bayes estimates of all queueing parameters under SELF

perform better than those under PLF in terms of estimated risks. There is only one

exception to it. Average waiting time under PLF performs better than that under SELF

for θ1 < θ2 and for some choices of λ and µ such that λ
µ < k where 0 < k < 0.4.

• Bayes estimates of ρ under PLF are pretty unstable even for large sample size.

• For fixed values of other hyper-parameters, as (θ1 − θ2) increases, Bayes estimates under

both SELF and PLF also increase. On the other hand, under the same set-up, as (θ2−θ1)
increases, Bayes estimates decrease.

• As expected, the risks associated with all the estimates diminish with increase in the

sample size (number of independent queues observed) for both SELF and LLF except for

a few sampling fluctuations..
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5 Conclusion

Although Bayes estimation of QPM’s are carried out on different occasions using independent

gamma priors or bivariate normal distribution as prior, the condition of ergodicity (λ < µ) is

never used in any of the work. We have used this ergodicity condition in the form of using

beta-Stacy distribution as prior which has a natural restricted range (0 < λ < µ < ∞). Bayes

estimates of traffic intensity, average system length and average waiting time in the system are

obtained using the stated prior under both SELF and PLF. It is observed from the simulation

study that the use of beta-Stacy as prior is justified as it yields stable estimates of the QPM’s,

specially under SELF.

References

Armero, C.: Bayesian Analysis of M/M/1 queues. Bayesian Statistics 2, 613-617 (1985)

Armero, C.: Bayesian inference in Markovian queues. Queueing Systems 15, 419-426 (1994)

Armero, C., Bayarri, M.J.: Bayesian prediction in M/M/1 queues. Queueing Systems 15,

401-417 (1994)

Berger, James O.: Decision Theory : Foundations, Concepts and Methods. New York: Springer

Verlag (1980)

Bhat U.N., Miller G.K., Rao S.S.: Statistical Analysis of Queueing Systems. Frontiers in

Queueing ed. J.H. Dshalalow, 351-394 (1997)

Chowdhury, S., Mukherjee, S.P.: Estimation of waiting time distribution in an M/M/1 Queue.

OPSEARCH 48 (4), 306-317 (2011)

Chowdhury, S., Mukherjee, S.P.: Estimation of traffic intensity based on queue length in a

single M/M/1 queue. Communications in Statistics Theory and Methods 42 (13), 2376-2390

(2013)

Gross, D., Harris, P.: Fundamentals of Queueing Theory. 3rd ed. New York, Wiley (1998)

Insua D.R., Wiper M., Ruggeri F.: Bayesian analysis of M/Er/1 and M/Hk/1 queues. Queue-

ing Systems 30, 289-308 (1998)

Johnson, N.L., Kotz, S.: Continuous Univariate distributions. John Wiley (1952)

McGrath, M.F., Singpurwalla, N.D.: A subjective Bayesian approach to the theory of queues,

Part-1 : Modelling. Queueing Sys. 1, 317-333 (1987)

Part-2 : Inference and information in M/M/1 queues. Queueing Sys. 1, 335-353 (1987)

Mihram, G.A., Hulquist, R.A.: A bivariate warning-time/failure-time distribution. JASA 62,

589-599 (1967)

Muddapur M.V.: Bayesian Estimates of parameters in some queueing models. Ann. Inst. Stat.

Math. 24, 327-331 (1972)

9



Mukherjee, S.P., Chowdhury, S.: Bayesian Estimation of Traffic Intensity. Iapqr Transactions.

30, 89-100 (2005)

Mukherjee, S.P., Chowdhury, S.: Maximum Likelihood and Bayes Estimation in M/M/1 Queue.

Stochastic Modeling and Applications 8, 47-55 (2005)

Mukherjee, S.P., Chowdhury, S.: Bayes Estimation of measures of effectiveness in an M/M/1

Queueing model. Calcutta Statistical Association Bulletin 62, 97-108 (2010)

Norstrom, J. G.: The use of Precautionary Loss Functions in Risk Analysis. IEEE Transactions

on reliability 45 (3), 400-403 (1996)

Thiruvaiyaru D., Basawa I.V.: Empirical Bayes Estimation for queueing systems and networks.

Queueing Sys. 11, 179-202 (1992)

Wiper M.P.: Bayesian Analysis of Er/M/1 and Er/M/c queues. Journal of Stat. Planning and

Inference 69, 65-79 (1998)

10



 

11 
 

Table 2:  Different Estimates and their estimated risks for λ = 1.2, µ = 6, ρ = 0.2 

n=5 
 

Hyper-
parameters 

𝜌𝑆
𝐵 𝐿𝑆

𝐵 𝑊𝑆
𝐵 𝜌𝑃

𝐵 𝐿𝑃
𝐵  𝑊𝑃

𝐵 

θ1=4, θ2=3, 

α=2, c=2 
0.3920 (0.0397) 
[0.3333, 0.5000] 

0.7523 (0.2845) 
[0.5714, 1.1249] 

0.7765 (0.3291) 
[0.6963, 0.9495] 

0.1730 (0.0172) 
[0.1282, 0.2647] 

0.8232 (0.4129) 
[0.4762, 1.7143]  

0.8320 (0.4240) 
[0.6548, 1.2500] 
 

θ1=3, θ2=4, 

α=2, c=2 
0.3156 (0.0169) 
[0.2500, 0.4375] 

0.5325 (0.1045) 
[0.3750, 0.8750] 

0.6791 (0.2264) 
[0.6093, 0.8308] 

0.1181 (0.0934) 
[0.0769, 0.2059] 

0.4284 (0.1146) 
[0.2143, 1.000] 

0.6233 (0.1921) 
[0.4911, 0.9375] 
 

θ1=10,θ2=3, 

α=2, c=2 
0.5830 (0.1474) 
[0.5556, 0.6363] 

1.6092 (1.8806) 
[1.4286, 2.000] 

1.1562 (0.9049) 
[1.0761, 1.3293] 

0.3526 (0.0668) 
[0.3216, 0.4150]  

3.3280 (2.8476) 
[2.6190, 5.000] 

1.8866 (2.8961) 
[1.6190, 2.5000] 
 

θ1=3,θ2=10, 

α=2, c=2 
0.2186 (0.0027) 
[0.1667, 0.3182] 

0.3053 (0.0113) 
[0.2143, 0.5000] 

0.5784 (0.1386) 
[0.5381, 0.6647] 

0.0584 (0.4456) 
[0.0351, 0.1107] 

0.1327 (0.2348) 
[0.0659, 0.3077] 

0.4359 (0.0559) 
[0.3736, 0.5769] 
 

θ1=15,θ2=3, 

α=2, c=2 
0.6690 (0.2202) 
[0.6522, 0.7037] 

2.3183 (4.3083) 
[2.1429, 2.7143] 

1.4704 (1.5987) 
[1.3926, 1.6459] 

0.4566 (0.1444) 
[0.4348, 0.5026] 

6.6921 (6.2017) 
[5.7143, 9.0476] 

3.0822 (8.3751) 
[2.7500, 3.8690] 
 

θ1=3,θ2=15, 

α=2, c=2 
0.1730 (0.0023) 
[0.1304, 0.2593] 

0.2233 (0.0050) 
[0.1579, 0.3684] 

0.5421 (0.1122) 
[0.5131, 0.6064] 

0.0371 (0.8939) 
[0.0217, 0.0741] 

0.0696 (0.7103) 
[0.0351, 0.1637] 

0.3791 (0.0310) 
[0.3377, 0.4752] 
 

θ1=4,θ2=3, 

α=2, c=-2 
0.3920 (0.0397) 
[0.3333, 0.5000] 

0.7523 (0.2845) 
[0.5714, 1.1249] 

1.1623 (0.9241) 
[1.0445, 1.4243] 

0.1730 (0.0172) 
[0.1282, 0.2647] 

0.8232 (0.4129) 
[0.4762, 1.7143]  

1.6565 (2.2341) 
[1.3095, 2.5000] 
 

θ1=4,θ2=3, 

α=7, c=1 
0.3920 (0.0397) 
[0.3333, 0.5000] 

0.7523 (0.2845) 
[0.5714, 1.1249] 

0.1460 (0.0041) 
[0.1310, 0.1786] 

0.1730 (0.0172) 
[0.1282, 0.2647] 

0.8232 (0.4129) 
[0.4762, 1.7143]  

0.0278 (0.0327) 
[0.0218, 0.0417] 
 

θ1=4,θ2=3, 

α=0.5, c=5 
0.3920 (0.0397) 
[0.3333, 0.5000] 

0.7523 (0.2845) 
[0.5714, 1.1249] 

1.4760 (1.6290) 
[1.3261, 1.8084] 

0.1730 (0.0172) 
[0.1282, 0.2647] 

0.8232 (0.4129) 
[0.4762, 1.7143]  

4.4462 (18.9269) 
[3.5144, 6.7093] 

n=20 
 
θ1=4, θ2=3, 

α=2, c=2 

0.2762 (0.0088) 
[0.1786, 0.3947] 

0.4075 (0.0376) 
[0.2272, 0.6818] 

0.6237 (0.1750) 
[0.5438, 0.7452] 

0.0852 (0.2269) 
[0.0369, 0.1619] 

0.2068 (0.1059) 
[0.0649, 0.5195] 

0.5054 (0.0954) 
[0.3799, 0.7208] 
 

θ1=3, θ2=4, 

α=2, c=2 

0.2453 (0.0053) 
[0.1429, 0.3684] 

0.3473 (0.0212) 
[0.1739, 0.6087] 

0.5970 (0.1534) 
[0.5202, 0.7128] 

0.0689 (0.3804) 
[0.0246, 0.1417] 

0.1541 (0.2345) 
[0.0395, 0.4150] 

0.4622 (0.0704) 
[0.3468, 0.6581] 
 

θ1=10, θ2=3, 

α=2, c=2 

0.3929 (0.0387) 
[0.3235, 0.4773] 

0.6838 (0.2012) 
[0.5000, 0.9545] 

0.7461 (0.2918) 
[0.6647, 0.8661] 

0.1620 (0.0178) 
[0.1109, 0.2333] 

0.5360 (0.1649) 
[0.2857, 1.000] 

0.7259 (0.2782) 
[0.5714, 0.9773] 
 

θ1=3, θ2=10, 

α=2, c=2 

0.2079 (0.0026) 
[0.1176, 0.3023] 

0.2769 (0.0081) 
[0.1379, 0.4483] 

0.5658 (0.1293) 
[0.5042, 0.6417] 

0.0499 (0.6514) 
[0.0168, 0.0962] 

0.0970 (0.5169) 
[0.0246, 0.2241] 

0.4127 (0.0450) 
[0.3251, 0.5302] 
 

θ1=15, θ2=3, 

α=2, c=2 

0.4634 (0.0703) 0.9093 (0.4479) 0.8460 (0.4093) 0.2213 (0.0050) 0.9234 (0.4951) 0.9355 (0.5422) 
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[0.4103, 0.5306] [0.7273, 0.1818] [0.7654, 0.9668] [0.1744, 0.2865] [0.5887, 1.5195] [0.7608, 1.2208] 
 

θ1=3,θ2=15, 

α=2, c=2 

0.1838 (0.0024) 
[0.1026, 0.2857] 

0.2361 (0.0056) 
[0.1176, 0.4118] 

0.5477 (0.1162) 
[0.4952, 0.6256] 

0.0393 (0.9336) 
[0.0128, 0.0857] 

0.0702 (0.8484) 
[0.0178, 0.1872] 

0.3856 (0.0336) 
[0.3133, 0.5027] 
 

θ1=4, θ2=3, 

α=2, c=-2 

0.2762 (0.0088) 
[0.1786, 0.3947] 

0.4075 (0.0376) 
[0.2272, 0.6818] 

0.9356 (0.5347) 
[0.8157, 1.1179] 

0.0852 (0.2269) 
[0.0369, 0.1619] 

0.2068 (0.1059) 
[0.0649, 0.5195] 

1.011 (0.6739) 
[0.7597, 1.4416] 
 

θ1=4, θ2=3, 

α=7, c=1 

0.2762 (0.0088) 
[0.1786, 0.3947] 

0.4075 (0.0376) 
[0.2272, 0.6818] 

0.4101 (0.0385) 
[0.2273, 0.6818] 

0.0852 (0.2269) 
[0.0369, 0.1619] 

0.2068 (0.1059) 
[0.0649, 0.5195] 

0.0169 (0.0367) 
[0.0127, 0.0240] 
 

θ1=4, θ2=3, 

α=0.5, c=5 

0.2762 (0.0088) 
[0.1786, 0.3947] 

0.4075 (0.0376) 
[0.2272, 0.6818] 

1.1881 (0.9691) 
[1.0357, 1.4193] 

0.0852 (0.2269) 
[0.0369, 0.1619] 

0.2068 (0.1059) 
[0.0649, 0.5195] 

2.7145 (6.4877) 
[2.0389, 3.8687] 
 

n=50 
 
θ1=4, θ2=3, 

α=2, c=2 

0.2345 (0.0031) 
[0.1452, 0.3205] 

0.3165 (0.0103) 
[0.1731, 0.4808] 

0.5834 (0.1418) 
[0.5198, 0.6561] 

0.0594 (0.4324) 
[0.0230, 0.1055] 

0.1143 (0.3044) 
[0.0339, 0.2451] 

0.4368 (0.0549) 
[0.3450, 0.5517] 
 

θ1=3, θ2=4, 

α=2, c=2 

0.2206 (0.0023) 
[0.1429, 0.3077] 

0.2925 (0.0074) 
[0.1698, 0.4528] 

0.5727 (0.1339) 
[0.5184, 0.6438] 

0.0530 (0.5385) 
[0.0223, 0.0974] 

0.0985 (0.4214) 
[0.0327, 0.2177] 

0.4209 (0.0476) 
[0.3431, 0.5308] 
 

θ1=10, θ2=3, 

α=2, c=2 

0.2960 (0.0105) 
[0.2319, 0.3690] 

0.4324 (0.0389) 
[0.3077, 0.5962] 

0.6347 (0.1829) 
[0.5795, 0.7073] 

0.0916 (0.1541) 
[0.0563, 0.1389] 

0.2049 (0.0478) 
[0.1026, 0.3741] 

0.5174 (0.0986) 
[0.4295, 0.6416] 
 

θ1=3, θ2=10, 

α=2, c=2 

0.2029 (0.0017) 
[0.1304, 0.2857] 

0.2622 (0.0045) 
[0.1525, 0.4068] 

0.5593 (0.1240) 
[0.5107, 0.6234] 

0.0449 (0.6948) 
[0.0186, 0.0840] 

0.0789 (0.6024) 
[0.0263, 0.1753] 

0.4008 (0.0389) 
[0.3328, 0.4972] 
 

θ1=15, θ2=3, 

α=2, c=2 

0.3404 (0.0207) 
[0.2838, 0.4045] 

0.5297 (0.0841) 
[0.4038, 0.6923] 

0.6779 (0.2216) 
[0.6221, 0.7499] 

0.1197 (0.0656) 
[0.0832, 0.1663] 

0.3024 (0.0262) 
[0.1742, 0.5023] 

0.5905 (0.1496) 
[0.4955, 0.7217] 
 

θ1=3,θ2=15, 

α=2, c=2 

0.1911 (0.0017) 
[0.1096, 0.2697] 

0.2430 (0.0040) 
[0.1250, 0.3750] 

0.5508 (0.1180) 
[0.4985, 0.6093] 

0.0400 (0.8350) 
[0.0133, 0.0749] 

0.0679 (0.7731) 
[0.0179, 0.1488] 

0.3885 (0.0340) 
[0.3170, 0.4747] 
 

θ1=4, θ2=3, 

α=2, c=-2 

0.2345 (0.0031) 
[0.1452, 0.3205] 

0.3165 (0.0103) 
[0.1731, 0.4808] 

0.8752 (0.4472) 
[0.7925, 0.9842] 

0.0594 (0.4324) 
[0.0230, 0.1055] 

0.1143 (0.3044) 
[0.0339, 0.2451] 

0.8739 (0.4534) 
[0.7130, 1.1033] 
 

θ1=4, θ2=3, 

α=7, c=1 

0.2345 (0.0031) 
[0.1452, 0.3205] 

0.3165 (0.0103) 
[0.1731, 0.4808] 

0.1097 (0.0098) 
[0.7925, 0.9842] 

0.0594 (0.4324) 
[0.0994, 0.1234] 

0.1143 (0.3044) 
[0.0339, 0.2451] 

0.0145 (0.0376) 
[0.0119, 0.0184] 
 

θ1=4, θ2=3, 

α=0.5, c=5 

0.2345 (0.0031) 
[0.1452, 0.3205] 

0.3165 (0.0103) 
[0.1731, 0.4808] 

1.1117 (0.8202) 
[1.0062, 1.2496] 

0.0594 (0.4324) 
[0.0994, 0.1234] 

0.1143 (0.3044) 
[0.0339, 0.2451] 

2.3475 (4.6522) 
[1.9136, 2.9610] 
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Table 3:  Different Estimates and their estimated risks for λ = 4, µ = 5, ρ = 0.8 
 

n=5 
 

Hyper-
parameters 

𝜌𝑆
𝐵 𝐿𝑆

𝐵 𝑊𝑆
𝐵 𝜌𝑃

𝐵 𝐿𝑃
𝐵  𝑊𝑃

𝐵 

θ1=4, θ2=3, 

α=2, c=2 
0.7276 (0.0124) 
[0.5294, 0.8571] 

3.4676 (2.4104) 
[1.2857, 6.8571] 

1.9796 (1.3773) 
[1.0128, 3.4816] 

0.5431 (0.1902) 
[0.2941, 0.7368] 

17.0875 (10.97) 
[2.1428, 56.000] 

6.2557 (47.5842) 
[1.4286, 17.6786] 
 

θ1=3, θ2=4, 

α=2, c=2 
0.6920 (0.0208) 
[0.4706, 0.8393] 

2.8898 (2.8374) 
[1.000, 5.8750] 

1.7236 (0.8387) 
[0.8862, 3.0464] 

0.4951 (0.3011) 
[0.2353, 0.7068] 

11.7908 (6.769) 
[1.2857, 40.280] 

4.6426 (23.9552) 
1.0714, 13.2589] 
 

θ1=10,θ2=3, 

α=2, c=2 
0.7744 (0.0039) 
[0.6522, 0.8689] 

4.2604 (2.0841) 
[2.1429, 7.5714] 

2.3310 (2.1674) 
[1.3926, 3.7981] 

0.6078 (0.0833) 
[0.4348, 0.7567] 

24.2390 (17.23) 
[5.7143, 68.142] 

8.4400 (79.2515) 
[2.7500, 21.0714] 
 

θ1=3,θ2=10, 

α=2, c=2 
0.5794 (0.0601) 
[0.3478, 0.7581] 

1.6491 (6.0491) 
[0.5714, 3.3571] 

1.1738 (0.1328) 
[0.6963, 1.9307] 

0.3535 (0.8684) 
[0.1304, 0.5776] 

3.6179 (5.3843) 
[0.3956, 12.395] 

1.9790 (2.3161) 
[0.6346, 5.0275] 
 

θ1=15,θ2=3, 

α=2, c=2 
0.8047 (0.0019) 
[0.7143, 0.8806] 

5.0218 (3.1718) 
[2.8571, 8.4286] 

2.6683 (3.2011) 
[1.7092, 4.1780] 

0.6533 (0.0443) 
[0.5172, 0.7770] 

32.7407 (25.41) 
[10.000, 84.286] 

10.9461 (131.255) 
[4.1786, 25.5357] 
 

θ1=3,θ2=15, 

α=2, c=2 
0.5136 (0.0936) 
[0.2857, 0.7015] 

1.2238 (7.9890) 
[0.4211, 2.4737] 

0.9854 (0.0556) 
[0.6297, 1.5392] 

0.2810 (1.4589) 
[0.0887, 0.4952] 

1.9466 (11.696) 
[0.2105, 6.5965] 

1.3486 (0.5981) 
[0.5132, 3.1360] 
 

θ1=4,θ2=3, 

α=2, c=-2 
0.7276 (0.0124) 
[0.5294, 0.8571] 

3.4676 (2.4104) 
[1.2857, 6.8571] 

2.9472 (4.6893) 
[1.5193, 5.2224] 

0.5431 (0.1902) 
[0.2941, 0.7368] 

17.0875 (10.97) 
[2.1428, 56.000] 

12.2848 (198.67) 
[2.8571, 35.3571] 
 

θ1=4,θ2=3, 

α=7, c=1 
0.7276 (0.0124) 
[0.5294, 0.8571] 

3.4676 (2.4104) 
[1.2857, 6.8571] 

0.3677 (0.4138) 
[0.1905, 0.6429] 

0.5431 (0.1902) 
[0.2941, 0.7368] 

17.0875 (10.97) 
[2.1428, 56.000] 

0.2028 (0.6553) 
[0.0476, 0.5679] 
 

θ1=4,θ2=3, 

α=0.5, c=5 
0.7276 (0.0124) 
[0.5294, 0.8571] 

3.4676 (2.4104) 
[1.2857, 6.8571] 

3.7494 (9.0355) 
[1.9289, 6.6307] 

0.5431 (0.1902) 
[0.2941, 0.7368] 

17.0875 (10.97) 
[2.1428, 56.000] 

33.1537 (1569.76) 
[7.6677, 94.8884] 
 

n=20 
 
θ1=4, θ2=3, 

    α=2, c=2 

0.7774 (0.0023) 
[0.6849, 0.8477] 

3.8191 (0.8608) 
0.2727, 5.8182] 

2.1354 (1.4518) 
[1.4502, 3.0212] 

0.6079 (0.0736) 
[0.4720, 0.7194] 

16.3296 (9.566) 
[5.5195, 35.740] 

6.2419 (33.2507) 
[2.7662, 12.0942] 
 

θ1=3, θ2=4, 

α=2, c=2 

0.7678 (0.0030) 
[0.6712, 0.8389] 

3.6069 (0.8896) 
[2.1304, 5.4348] 

2.0414 (1.2288) 
[1.3871, 2.8513]  

0.5932 (0.0868) 
[0.4535, 0.7047] 

14.5338 (7.925) 
[4.8419, 31.126] 

5.6869 (26.6020) 
[2.5257, 10.7490] 
 

θ1=10, θ2=3, 

α=2, c=2 

0.7901 (0.0015) 
[0.7051, 0.8526] 

4.0942 (0.8399) 
[2.5000, 6.0455] 

2.2573 (1.7440) 
[1.5509, 3.1220] 

0.6272 (0.0572) 
[0.4998, 0.7277] 

18.6260 (11.68) 
[6.6667, 38.576] 

6.9536 (41.8902) 
[3.1667, 12.9167] 
 

θ1=3, θ2=10, 

α=2, c=2 

0.7264 (0.0078) 
[0.6154, 0.8077] 

2.8671 (1.7603) 
[1.6552, 4.3448] 

1.7135 (0.6028) 
[1.1765, 2.3684] 

0.5319 (0.1582) 
[0.3817, 0.6534] 

9.1098 (3.3421) 
[2.8966, 19.707] 

3.9610 (10.8453) 
[1.8017, 7.3491] 
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θ1=15, θ2=3, 

α=2, c=2 

0.7995 (0.0012) 
[0.7229, 0.8571] 

4.3199 (0.9278) 
[2.7273, 6.2727] 

2.3573 (2.0044) 
[1.6516, 3.2226] 

0.6418 (0.0464) 
[0.5250, 0.7354] 

20.6206 (13.55) 
[7.9221, 41.519] 

7.5651 (50.0331) 
[3.5942, 13.7662] 
 

θ1=3,θ2=15, 

α=2, c=2 

0.6946 (0.0138) 
[0.5783, 0.7826]  

2.4403 (2.7833) 
[1.4118, 3.7059] 

1.5244 (0.3439) 
[1.0689, 2.0852] 

0.4871 (0.2323) 
[0.3373, 0.6135] 

6.5708 (1.6673) 
[2.0963, 14.262] 

3.1129 (5.6622) 
[1.4799, 5.6684] 
 

θ1=4, θ2=3, 

α=2, c=-2 

0.7774 (0.0023) 
[0.6849, 0.8477] 

3.8191 (0.8608) 
0.2727, 5.8182] 

3.2114 (5.2611) 
[2.1451, 4.5318] 

0.6079 (0.0736) 
[0.4720, 0.7194] 

16.3296 (9.566) 
[5.5195, 35.740] 

12.5524 (157.187) 
[5.3788, 24.1883] 
 

θ1=4, θ2=3, 

α=7, c=1 

0.7774 (0.0023) 
[0.6849, 0.8477] 

3.8191 (0.8608) 
0.2727, 5.8182] 

0.4028 (0.3623) 
[0.2689, 0.5644] 

0.6079 (0.0736) 
[0.4720, 0.7194] 

16.3296 (9.566) 
[5.5195, 35.740] 

0.2092 (0.6317) 
[0.0896, 0.3978] 
 

θ1=4, θ2=3, 

α=0.5, c=5 

0.7774 (0.0023) 
[0.6849, 0.8477] 

3.8191 (0.8608) 
0.2727, 5.8182] 

4.0665 (9.9976) 
[2.7619, 5.7539] 

0.6079 (0.0736) 
[0.4720, 0.7194] 

16.3296 (9.566) 
[5.5195, 35.740] 

33.5056 (1225.36) 
[14.8475, 64.914] 
 

n=50 
 
θ1=4, θ2=3, 

α=2, c=2 

0.7908 (0.0008) 
[0.7337, 0.8364] 

3.9288 (0.3782) 
[2.8077, 5.2115] 

2.1840 (1.4751) 
[1.6872, 2.7524] 

0.6268 (0.0524) 
[0.5392, 0.7000] 

16.1953 (9.285) 
[8.0828, 27.795] 

6.2632 (30.1505) 
[3.6770, 9.8045] 
 

θ1=3, θ2=4, 

α=2, c=2 

0.7865 (0.0009) 
0.73, 0.8334) 

3.8257 (0.3889) 
[2.7547, 5.0943] 

2.1384 (1.3662) 
[1.6638, 2.7005] 

0.6199 (0.0570) 
[0.5339, 0.6949] 

15.3568 (8.506) 
8.0928, 27.795] 

6.0021 (27.2967) 
[3.5742, 9.4345] 
 

θ1=10, θ2=3, 

α=2, c=2 

0.7953 (0.0006) 
[0.7427, 0.8384] 

4.0307 (0.3643) 
[2.9423, 5.2885] 

2.2292 (1.5822) 
[1.7469, 2.7865] 

0.6337 (0.0476) 
[0.5526, 0.7034] 

17.0147 (10.04) 
[8.8846, 28.621] 

6.5190 (32.9407) 
[3.9423, 10.0492] 
 

θ1=3, θ2=10, 

α=2, c=2 

0.7687 (0.0018) 
[0.7073, 0.8182] 

3.4446 (0.5999) 
[2.4576, 4.5763] 

1.9694 (0.9970) 
[1.5321, 2.4709] 

0.5924 (0.0787) 
[0.5013, 0.6699] 

12.4254 (5.848) 
[6.1864, 21.382] 

5.0786 (18.1792) 
[3.0254, 7.8837] 
 

θ1=15, θ2=3, 

α=2, c=2 

0.7991 (0.0006) 
[0.7476, 0.8408] 

4.1264 (0.3898) 
[3.0192, 5.3846] 

2.2716 (1.6903) 
[1.7810, 2.8291] 

0.6398 (0.0438) 
[0.5598, 0.7074] 

17.8231 (10.80) 
[9.3537, 39.668] 

6.7690 (35.9262) 
[4.0980, 10.3594] 
 

θ1=3,θ2=15, 

α=2, c=2 

0.7542 (0.0029) 
[0.6905, 0.8054] 

3.1742 (0.9266) 
[2.2656, 4.2031] 

1.8496 (0.7699) 
[1.4470, 2.3056] 

0.5704 (0.0993) 
[0.4778, 0.6491] 

10.5342 (4.210) 
[5.2505, 18.013] 

4.4706 (13.1849) 
[2.6954, 6.8549] 
 

θ1=4, θ2=3, 

α=2, c=-2 

0.7908 (0.0008) 
[0.7337, 0.8364] 

3.9288 (0.3782) 
[2.8077, 5.2115] 

3.2790 (5.3602) 
[2.5309, 4.1286] 
 

0.6268 (0.0524) 
[0.5392, 0.7000] 

16.1953 (9.285) 
[8.0828, 27.795] 

12.5508 (143.369) 
[7.3541, 19.6090] 

θ1=4, θ2=3, 

α=7, c=1 

0.7908 (0.0008) 
[0.7337, 0.8364] 

3.9288 (0.3782) 
[2.8077, 5.2115] 

0.4111 (0.3494) 
[0.3173, 0.5176] 

0.6268 (0.0524) 
[0.5392, 0.7000] 

16.1953 (9.285) 
[8.0828, 27.795] 

0.2091 (0.6282) 
[0.1226, 0.3268] 
 

θ1=4, θ2=3, 

α=0.5, c=5 

0.7908 (0.0008) 
[0.7337, 0.8364] 

3.9288 (0.3782) 
[2.8077, 5.2115] 

4.1581 (10.229) 
[3.2296, 5.2257] 

0.6268 (0.0524) 
[0.5392, 0.7000] 

16.1953 (9.285) 
[8.0828, 27.795] 

33.5762 (1128.91) 
[19.9366, 52.299] 
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