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1 Introduction

In theoretical and applied statistics, duration of life of certain organisms, devices, structures,

materials etc. is one of the well known random variables that attracts interest of many re-

searchers from various scientific disciplines. In reliability engineering, to assess or to determine

the lifespan of a system of components, for example, bearings, seals, gears etc., sample in-

formation on failure history are collected in suitable fashion from the population. A major

challenge to the statisticians and the reliability engineers is to develop an appropriate model

for the observed failure time data. In this context, a substantial part has been devoted to the

mathematical description of the length of life by a continuous failure time distribution.

However, in various practical scenarios, discrete failure time distributions are appro-

priate to model lifetime or the failure rate of the concerned object. For example, a discrete

distribution is appropriate when (i) a piece of equipment operates in cycles and the number of

cycles prior to failure is observed, (ii) failures occur only due to incoming shocks and number

of rounds fired until failure becomes more crucial than age at failure, (iii) a device is monitored

only once per time period (e.g., an hour, a day) and the observation is the number of time

periods successfully completed prior to failure of the device. When data are collected from a

continuous distribution, one will have to round it off. So, to be specific, data of continuous

nature may be obtained only in theory, but in practice, data are always discrete in nature.

Allison (1982) discussed discrete time models for the analysis of event histories in the context

of Sociological methodologies. Hamerle (1986) addressed certain techniques of regression anal-

ysis for discrete event history or failure time data. Khalique (1989) studied some inferential

aspects of certain class of discrete failure-time distributions. Interested readers may also see

Salvia and Bollinger (1982), Padgett and Spurrier (1985), Adams and Watson (1989), Klar

(1999) and the references therein.

Fahrmeir (1994) considered some dynamic modeling and penalized likelihood estima-

tion methods for discrete time survival data, whereas Fahrmeir and Knorr-Held (1997) pro-

posed estimation of dynamic discrete-time duration models via Markov Chain Monte Carlo.

Rocha-Martine and Shaked (1995) proposed a discrete-time model of failure and repair.

Fahrmeir and Wagenpfeil (1996) investigated time-varying effects in discrete duration for

competing risk models. Scheike and Jensen (1997) proposed an interesting discrete survival
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model with random effects in connection with time to pregnancy. Shis (1998) considered

multivariate discrete failure time data.

Klar (1999) nicely summarised theory and methods for model selection for a family of

discrete failure time distributions. He pointed out that though a large number of new discrete

distributions have appeared in the literature, there is dearth of flexible discrete models which,

at the same time, allow for easy statistical inference even though exhibit constant, increasing

or decreasing failure rates. The scenario has changed only a little even after a decade though

the importance of discrete lifetime distributions has well recognized among researchers and

practitioners in Sociology and in Biometrics, among several other practical fields. It is well

known that this is one of the major areas of interest to the reliability engineers.

In the recent times, host of researchers investigated discrete failure time models. Jiang

and Kumar (2001) studied failure diagnosis of discrete event systems with linear-time temporal

logic fault specifications. Belzunce et al. (2009) discussed ageing properties of a discrete time

failure and repair model. Singh et al. (2009) analyzed the dynamic system model with discrete

failure time distribution. Patil and Bagkavos (2012) proposed semiparametric smoothing of

discrete failure time data.

In the present article, we propose two discrete distributions arising from the following

motivating example:

Suppose a financial institution (FI) has m (known positive integer) regional offices.

Further assume that ith regional office (RO) controls functioning of Ni (i = 1, 2, ...,m) branch

offices (BO) which work independently of each other. One of the indicators for the evaluation

of the performance of each of the BO’s under their respective RO’s is the number of new

accounts opened in the last three months each exceeding a high amount, τ , say, which is

known. Let us call these accounts as High Deposit Accounts (HDA). Quarterly reviews on

the performance of the BO’s across all the RO’s may incur some extra operational costs

that may not be worthy to spend. A probabilistic model for the performance review may be

recommended henceforth.

Let Mij be the number of new HDA’s opened in the last three months at the jth branch

of the ith regional office. Then, Mi1,Mi2, ...,MiNi are assumed to be independent and identical

geometric random variables. We assume that Ni follows zero-truncated Poisson distribution
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independent of Mij. If Mi denotes the minimum of the number of HDA’s at the ith RO, we

can write Mi = min1≤j≤NiMij and may be termed as In-Bound Performance Index (IBPIi)

of the ith RO.

With similar arguments, the FI may be interested to know the number of old HDA’s

closed in the last three months each of which is less than a given amount, say, φ which is

known. Let M∗
ij be the number of old HDA’s closed in the last three months at the jth branch

of the ith regional office. If M∗
i denotes the maximum of the number of HDA’s at the ith

RO, we can write M∗
i = max1≤j≤NiM

∗
ij and may be termed as Out-Bound Performance Index

(OBPIi) of the ith RO.

In the current context, we study the distributions of IBPIi and OBPIi which are de-

scribed as Compounded Geometric (CG) distribution where the distribution of the observed

discrete data is described by a geometric distribution, and a zero-truncated Poisson distribu-

tion is used for the distribution of sample size of each subgroup. We develop two types of

CG distributions - one, from the minimum (e.g. the case of IBPIi), and another from the

maximum (e.g. the case of OBPIi) of the observed data from each subgroup.

The rest of the paper is organized as follows. In Section 2, a new distribution is obtained

by mixing the geometric distribution and a zero-truncated Poisson distribution. In Section 3,

various properties of the introduced distribution are discussed. Parameters of the distribution

are estimated in Section 4 by the maximum likelihood method and the distance minimization

method. In Section 5, a simulation study is performed to show the behaviour of asymptotic

variances and covariances of maximum likelihood estimators (MLEs). An illustrative example

based on real life data is provided in Section 6. Finally, Section 7 concludes the manuscript

with a future research problem. It is to mention that by θ1
sign
= θ2 we mean that θ1 and θ2

have the same sign. In the manuscript, some of the proofs are trivial and hence are given in

the Appendix.
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2 The Compounded Geometric distribution

The geometric distribution with parameter p ∈ (0, 1), denoted as G(p), has the probability

mass function (pmf) gK given by

gK(k; p) = pqk, k = 0, 1, 2, ...; p ∈ (0, 1), q = 1− p, (2.1)

with cumulative distribution function (CDF) given by

GK(k; p) = 1− qk+1. (2.2)

Let K1, K2, ..., KM be a random sample from G(p) and M be a zero-truncated Poisson variable

with pmf given by

P (m;λ) =
e−λλm(1− e−λ)−1

Γ(m+ 1)
, m ∈ N , λ > 0, (2.3)

where N is the set of natural numbers. Assuming that random variables K and M are

independent, we define

U = min
1≤i≤M

Ki.

Then the conditional distribution of (U |M = m)

FU(u | m) = 1− (1−GK(u; p))m = 1− q(u+1)m, (2.4)

with the corresponding pmf

fU(u | m) = P (U ≤ u | m)− P (U ≤ u− 1 | m) = qum(1− qm). (2.5)

Thus, the unconditional pmf of U is given by

f(u; q, λ) =
∞∑
m=1

fU(u | m)P (m;λ) =
eλq

u − eλqu+1

eλ − 1
, u = 0, 1, 2, ...; q ∈ (0, 1), λ > 0. (2.6)

Hereafter, the distribution of U will be referred to as the CG distribution of Type-I and will

be denoted by CG(I). As λ approaches zero, the CG(I) distribution leads to the geometric

distribution. Sometimes, to be specific, we write CG(I)(p, λ) to mean that the Type-I CG

has been derived based on a CG(I) distribution with parameters p and λ.

In this context, it may be interesting to note that, writing

V = max
1≤i≤M

Ki,
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we may get another kind of CG distribution, say CG distribution of Type-II and may be

denoted by CG(II). Using Equations (2.1)-(2.3), the conditional distribution of (V |M = m)

is given by

FV (v | m) = (GK(v; p))m =
(
1− qv+1

)m
, (2.7)

with the conditional pmf obtained as

fV (v | m) = P (V ≤ v | m)− P (V ≤ v − 1 | m) = (1− qv+1)m − (1− qv)m. (2.8)

Thus, the unconditional pmf of V is derived as

f ∗(v; q, λ) =
eλ(1−q(v+1)) − eλ(1−qv)

eλ − 1
, v = 0, 1, 2, ...; q ∈ (0, 1), λ > 0. (2.9)

As λ approaches zero, CG(II) also leads to its parent geometric distribution. Sometimes

we write CG(II)(p,λ) to mean that the Type-II CG has been derived based on a CG(II)

distribution with parameters p and λ. The following easy-to-show theorem talks of the shape

of the CG(I) distribution.

Theorem 2.1. Irrespective of the choices of parameters, the pmf of CG(I) distribution is

strictly decreasing.

Remark 2.1. The calculation of mode of CG(II) distribution is not very straightforward.

Thus, we use the following indirect approach to get the mode(s). Denoting the nonnegative

half of the real line by <+, let us write f1(w) = e−λq
w+1 − e−λq

w
, λ > 0, q > 0. Let us, for

the time being, pretend that f1(w) is continuous in w ≥ 0 and is sufficiently differentiable.

Now, f
′
1(w) = 0 gives w = 1

ln q
ln
[

ln(1/q)
pλ

]
= w0, say. Note that, pλ > 0 and ln(1/q) > 0,

imply that
[

ln(1/q)
pλ

]
> 0. As ln q < 0 and w > 0, ln(1/q) ≤ pλ ⇒ q ≥ e−pλ. It can be shown

that f(w0) ≥ f(w) for all w ≥ 0. Hence, if w0 in an integer, then w0 will be the mode;

otherwise, either [w0] or [w0] + 1 will be the mode depending on whether f([w0]) > f([w0] + 1)

or f([w0]) < f([w0] + 1), where, [·] denotes the largest integer function. In case f([w0]) =

f([w0] + 1), the distribution will be bimodal with modes at w0 and w0 + 1. Hence, CG(II) has

mode(s) for q ≥ e−pλ. It is to be noted that the distribution is decreasing and hence its mode

exists at v = 0 when q = e−pλ. 2

The shape of the pmfs for two types of CG distributions are illustrated for selected

values of the parameters in Figurs 2.A and 2.B respectively. It is to be noted that CG(I)

degenerates at u = 0 for large λ and fixed p, or for fixed λ and large p. It is easy to see that
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CG(II) also degenerates at v = 0 for fixed λ and large p. Nevertheless, if p is fixed, as λ→∞
right tail probability of CG(II) increases sharply.

<Figures 2.A and 2.B. HERE.>

3 Properties of the distribution

In this section we study different properties of the CG distributions viz. distribution function,

moments, percentiles including median and quartiles, measures of skewness etc. The hazard

rates of the CG distributions are also studied along with different results on stochastic orders.

Some of the proofs are listed in the appendix.

3.1 Distribution function and moments

The CDF of U is given by

HU(u; q, λ) =

 0 if u < 0

eλ−eλq[u]+1

eλ−1
if u ≥ 0

Similarly, the CDF of V is given by

HV (v; q, λ) =

 0 if v < 0

e−λq
[v]+1−e−λ
1−e−λ if v ≥ 0

Below we see that the mean residual life (MRL) function of CG distributions does not exist.

The proof is given in the appendix.

Result 3.1. For strictly positive finite λ and q ∈ (0, 1), the expectations and the higher order

moments of neither of the two CG distributions exist. Hence MRL function does not exist.

3.2 Percentiles, Median, Inter-Quartile Range and Skewness

It is easy to see that the 100ξth(ξ ∈ [0, 1]) percentile, say uξ, of CG(I) may be obtained by

solving the equation

eλ − eλq[u]+1

= ξ(eλ − 1). (3.1)
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In other words, 100ξth percentile of CG(I) is

uξ =
1

ln(q)
ln

(
1

λ
ln((1− ξ)eλ + ξ)

)
− 1. (3.2)

As a consequence, we get the following result. For the proof of the result, please see the

Appendix given at the end of the manuscript.

Result 3.2.1. Median (µ̃), Inter-Quartile Range (IQR) and Bowley’s coefficient of skewness

(b1X) of CG(I) are respectively given by

µ̃ =
1

ln(q)
ln

(
1

λ
ln

(
1

2
eλ +

1

2

))
− 1,

IQR =
1

ln(q)
ln

(
ln
(

1
4
eλ + 3

4

)
ln
(

3
4
eλ + 1

4

) ,
and

b1X =

ln

(
ln( 1

4
eλ+ 3

4). ln( 3
4
eλ+ 1

4)
(ln( 1

2
eλ+ 1

2))
2

)
ln

(
ln( 1

4
eλ+ 3

4)
ln( 3

4
eλ+ 1

4)

) .

Similarly, 100ξth(ξ ∈ [0, 1]) percentile, say vξ, of CG(II) may be obtained by solving

the equation

e−λq
[v]+1 − e−λ = ξ(1− e−λ), (3.3)

which results in

vξ =
1

ln(q)
ln

(
−1

λ
ln((1− ξ)e−λ + ξ)

)
− 1 (3.4)

The expressions for median, IQR and measure of skewness are given below. The proof may

be obtained in the Appendix.

Result 3.2.2. Median (µ̃), IQR and Bowley’s coefficient of skewness (b1X) of CG(II) are

respectively given by

µ̃ =
1

ln(q)
ln

(
−1

λ
ln

(
1

2
e−λ +

1

2

))
− 1,

IQR =
1

ln(q)
ln

(
ln
(

1
4
e−λ + 3

4

)
ln
(

3
4
e−λ + 1

4

)) ,
and

b1X =

ln

(
ln( 1

4
e−λ+ 3

4). ln( 3
4
e−λ+ 1

4)
(ln( 1

2
e−λ+ 1

2))
2

)
ln

(
ln( 1

4
e−λ+ 3

4)
ln( 3

4
e−λ+ 1

4)

) .
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It is interesting to note that skewness of none of CG(I) and CG(II) depend on q. Moreover,

expressions of b1X for both CG(I) and CG(II) show that the distributions are positively skewed.

3.3 Survival and Hazard Rate functions

Survival functions of CG(I) and CG(II) are respectively given by

S(l; q, λ) = P (U ≥ l) =
eλq

l − 1

eλ − 1
(3.5)

and

S∗(l; q, λ) = P (V ≥ l) =
1− e−λql

1− e−λ
. (3.6)

The hazard rate of CG(I) is given by

h(l; q, λ) =
P (U = l)

P (U ≥ l)
= 1− eλq

l+1 − 1

eλql − 1
. (3.7)

Similarly, the hazard rate of CG(II) is given by

h∗(l; q, λ) =
P (V = l)

P (V ≥ l)
= 1− 1− e−λql+1

1− e−λql
. (3.8)

The shape of the hazard rate functions (hrf) of CG(I) and CG(II) are illustrated in Figs. 3.3.A

and 3.3.B respectively.

The following theorems show the monotonicity of the failure rate functions of the CG

distributions. The proofs are given in the Appendix.

Theorem 3.3.1. CG(I) has decreasing failure rate (DFR).

Theorem 3.3.2. CG(II) has increasing failure rate (IFR).

Remark 3.1. It can be shown that

(i) liml→∞ h(l) = p = liml→∞ h
∗(l). Moreover, h(0) > p and h∗(0) < p give that the

hazard rate of CG(I) family of distributions is bounded below by p and that of CG(II)

is bounded above by p.

(ii) limλ→0 h(l) = p and limλ→∞ h(l) = 1

(iii) limλ→0 h
∗(l) = p and limλ→∞ h

∗(l) = 0
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(iv) limp→0 h(l) = 0 = limp→0 h
∗(l) and limp→1 h(l) = 1 = limp→1 h

∗(l)

<GRAPHS 3.3.A and 3.3.B HERE.>

3.4 Results on Ordering

To study different properties and usefulness of various stochastic orders for the proposed

model, we write Xk:n to denote the kth order statistic of a sample X1, X2, ..., Xn of size n. We

also use the standard notations, X ≤ST Y,X ≤DISP Y,X ≤C Y,X ≤SU Y and X ≤∗ Y to

mean that the random variable X is smaller than the random variable Y in stochastic order,

dispersive order, convex transform order, super-additive order and star order respectively. For

more information on stochastic orders used below, see, for instance, Shaked and Shanthikumar

(2007). Let us consider U1 and U2 to be the random variables following CG(I) distribution

with CDFs H1 and H2, pmfs f1 and f2, common scale parameter λ and shape parameters p1

and p2 respectively. Then the following theorems hold.

Theorem 3.4.A. For p1 ≥ p2 and fixed λ (> 0), we have

(i) U1 ≤ST U2.

(ii) U1 ≤DISP U2.

(iii) U1 ≤C U2.

Proof. The proof of (i) is trivial and hence is omitted. To prove (ii), note that U1 ≤DISP U2

if H−1
2 H1(u) − u is increasing in u. A simple calculation shows that H−1

2 H1(u) − u = (u +

1) ln(q1/q2)
ln q2

, which is increasing in u if q1 ≤ q2, or equivalently p1 ≥ p2. The proof of (iii) follows

from the fact that U1 ≤C U2 if H−1
2 H1(u) is increasing in u, which follows from (ii) if p1 ≥ p2.

2

The proof of the following corollary follows from the fact that star order and super-

additive order follows from convex transform order as discussed in Theorem 3.4.A (iii) above

where U1 ≤∗ U2 if H−1
2 H1(u)/u is increasing in u and U1 ≤SU U2 if H−1

2 H1(u1 + u2) ≥
H−1

2 H1(u1) +H−1
2 H1(u2) for all u1, u2.

Corollary: For p1 ≥ p2 and fixed λ (> 0), U1 ≤∗ U2 and U1 ≤SU U2. 2
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Let {Xn} be a sequence of iid nonnegative CG(I)(p1, λ) random variables and {Yn}
be another sequence of iid nonnegative CG(I)(p2, λ) random variables. Assume that Xi and

Yi are independently distributed, for i = 1, 2, . . . . Further let M be a zero-truncated Poisson

random variable independent of Xi and Yi. Then we have the following theorem.

Theorem 3.4.B

(i) For p1 ≥ p2, Xi ≤ST Yi ⇒ X1:M ≤ST Y1:M and XM :M ≤ST YM :M (Shaked and Wong,

1997).

(ii) For p1 ≥ p2, Xi ≤DISP Yi ⇒ X1:M ≤DISP Y1:M and XM :M ≤DISP YM :M (Shaked and

Wong, 1997)

iii For p1 ≥ p2, Xi ≤C Yi ⇒ X1:M ≤C Y1:M ⇒ X1:M ≤∗ Y1:M ⇒ X1:M ≤SU Y1:M and XM :M ≤C

YM :M ⇒ XM :M ≤∗ YM :M ⇒ XM :M ≤SU YM :M (Bartoszewicz, 2001).

Remark: Results similar to Theorem 3.4.A and its Corollary as well as Theorem 3.4.B hold

true for CG(II) with p1 ≥ p2.

4 Estimation of the parameters

As moments of none of the CG(I) and CG(II) exist, one of the most popular methods of

parameter estimation, viz. method of moment estimation cannot be employed in the present

context. Other than the popular and widely used parameter estimation techniques viz. maxi-

mum likelihood (ML) estimation, minimum distance (MD) estimation approach has also been

recommended by several authors in varying context of method of estimation. In this section,

we consider ML estimation and MD estimation based on Cramér von-Mises criterion using

the notion of empirical distribution function (EDF).

4.1 Method of Maximum Likelihood Estimation

In this section we derive the maximum likelihood (ML) estimators of the unknown parameters

q(= 1 − p) and λ. Let U1, U2, ..., Un and V1, V2, ..., Vn be a random sample of size n drawn

from CG(I) and CG(II) distributions respectively with parameters q(= 1 − p) and λ. Then
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the log-likelihood functions, L1(q, λ) for CG(I) and L2(q, λ) for CG(II), can respectively be

written as

L1(q, λ) = −n log(eλ − 1) +
n∑
i=1

log
(
eλq

ui − eλqui+1
)

(4.1)

L2(q, λ) = −n log(1− e−λ) +
n∑
i=1

log
(
e−λq

vi+1 − eλqvi
)

(4.2)

The ML Estimates (MLE), if exist, can be obtained by solving the system of equations ∂L1

∂q
= 0

and ∂L1

∂λ
= 0 for CG(I) and δL2

δq
= 0 and δL2

δλ
= 0 for CG(II) as shown below.

∂L1

∂q
=

n∑
i=1

qui−1

(
uie

λqui − (ui + 1)qeλq
ui+1

eλq
ui − eλqui+1

)
(4.3)

∂L1

∂λ
=
−neλ

eλ − 1
+

n∑
i=1

qui

(
eλq

ui − qeλqui+1

eλq
ui − eλqui+1

)
(4.4)

∂L2

∂q
=

n∑
i=1

qvi−1

(
vie
−λqvi − (vi + 1)qe−λq

vi+1

e−λq
vi+1 − e−λqvi

)
(4.5)

∂L2

∂λ
=
−ne−λ

1− e−λ
+

n∑
i=1

qvi

(
e−λq

vi − qe−λqvi+1

e−λq
vi+1 − e−λqvi

)
(4.6)

It is clear that the explicit form of second order derivatives and consequently that of Hessian

Matrices (as well as Fisher Information) for both CG(I) and CG(II) are complicated and are

not of much practical interest. Computationally, it is easy to see that the Hessian matrices of

both the distributions are nonnegative definite and hence MLE’s exist. These estimators can

be easily obtained by using the function optim from the statistical softwareR (version R.2.14.1,

R Development Core Team, 2011). Since full Hessian matrices are difficult to compute in

practice, in the current context, we recommend to use quasi-Newton algorithms, namely

the BFGS (named after Broyden, Fletcher, Goldfarb and Shanno) algorithm for numerical

maximization of log-likelihood functions. Details of the computational results are provided in

subsequent section.

4.2 Method of minimum distance

Minimum distance (MD) estimation is a statistical method for fitting a mathematical model

to data. Let X1, . . . , Xn be a random sample from a population with CDF F (.; θ) : θ ∈ Θ, the
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parameter space and Θ ⊆ <k(k ≥ 1). Further suppose that Fn(.) is the empirical distribution

function (EDF) based on the sample and θ̂ is an estimator of θ. Then it is legitimate to assume

that F (x; θ̂) is an estimator for F (x; θ). Let d[·, ·] be a functional or the criterion function

returning some measure of “distance” between the two arguments. Now, in such a set up, if

there exists a θ̂ ∈ Θ such that

d[F (x; θ̂), Fn(x)] = inf
θ∈Θ

d[F (x; θ), Fn(x)],

then θ̂ is referred to as the “minimum distance estimator (MDE)” of θ. Interested readers may

see Wolfowitz (1957), Blyth (1970), Drossos and Philippou (1980), Parr and Schucany (1980)

and Boos (1982) and Weber et al. (2006). In the recent times, Hanselmann et al. (2007) also

considered some parametric density estimation problems by minimizing an analytic distance

measure.

In this section, we consider Cramér von-Mises type distance measure for estimating

the parameters of CG(I) and CG(II) distributions. For CG(I) distribution, estimates of λ and

p (or q = 1− p) are obtained by minimizing

n∑
i=1

[
eλ − eλq(ui+1)

eλ − 1
− Fn(ui)

]2

,

whereas for CG(II) distribution we minimize

n∑
i=1

[
e−λq

(vi+1) − e−λ

1− e−λ
− Fn(vi)

]2

.

The technique is generally easy to program, as it neither requires evaluation of likelihood nor

calculation of derivatives. The method is computationally faster compared to ML estimation.

Performance of the MD method is found to be almost as good as ML method in most of the

situations and is better in certain cases.

5 Simulation study

It is not feasible to solve the equations ∂Li
δq

= 0 and ∂Li
δλ

= 0 (i = 1, 2) explicitly in order

to get ML estimates for CG(I) and CG(II) distributions. However, one can easily find the

numerical solution applying some suitable optimization techniques. In the present context,

13



we use the in-built optim function in R.2.14.1 software for numerical minimization of negative

of log-likelihood function. We adopt L-BFGS-B method as in Byrd et al.(1995) which is

nothing but a limited-memory modification of the BFGS quasi-Newton method mentioned

in subsection 4.1. This method allows box constraints, i.e., each parameter may be given a

lower and/or upper bound. The initial values are supposed to satisfy the box constraints. For

further details, one may see R documentation. We carry out detailed simulation studies to

capture the means and the standard deviations (SD) of the ML estimators of λ and q. Five

thousand replicates of Monte-Carlo experiments are considered in the present investigation.

Similar method is applied to find out the MDEs and the means and the SDs of MD estimators.

In order to study the convergence of the estimators to its true value as sample size (n)

increases, a random sample of size 10, 25, 50, 100, 500 and 1000 are obtained respectively

from CG(I) and CG(II) for four choices of q viz. 0.97, 0.95, 0.93 and 0.91 and two choices of

λ viz. 3 and 5. The means and the SDs of estimators λ̂ and q̂ are obtained by two different

techniques viz. ML method and MD method. The results for CG(I) distribution are reported

in Table 5.1 and the same for CG(II) are presented in Table 5.2.

It is easy to see from Table 5.1 that, for CG(I) distribution, q̂ sharply converges to q in

almost all cases, as n increases, irrespective of the choice of method of estimation. For λ = 3,

convergence is faster with MD method when true value of q is 0.91 or 0.93, and elsewhere ML

estimate of q converges at a faster rate. Interestingly, for small n, in almost all cases, bias of

the estimator of q is less if MD method is adopted except when the true value of λ is 5 and

that of q is 0.91. However, the MD estimator of λ in such cases returns a larger bias compared

to the corresponding ML estimator. For λ, MD estimates are better than or as good as the

corresponding ML estimates when n is large and q is 0.91 or 0.93. Estimates of λ for CG(I)

distribution are fluctuating a little for small n, but slowly converges to its true value as n

increases.

From Table 5.2, we see that for both the methods of estimation, λ̂ and q̂ sharply

converge to the true value of λ and q respectively for CG(II) distribution. We further see

that MD method is unquestionably superior to ML approach for small to moderate n. Here

superiority is judged on the basis of average bias. The lower is the bias, the better is the

approach. For large n, however, both the approaches are nearly equally effective except for

small sampling fluctuations.
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INSERT TABLES 5.1 and 5.2 HERE.

6 Applications

In this section, we fit both CG(I) and CG(II) distributions to a real data set taken from

www.planecrashinfo.com. The aviation accident database of this site includes all civil and

commercial aviation accidents of noteworthy interest. The data consist of number of fatalities

on board (passengers / crew) and persons killed in ground, if any, in different plane crashes

in the calendar year 2011. This comprises of 44 observations on number of casualties in 44

different plane crashes. The data set is given below:

3 77 9 6 14 6 23 32 18 7 27

22 10 47 9 85 7 16 80 2 8 38

11 12 4 21 8 44 30 3 2 19 18

2 28 8 1 5 8 1 3 5 4 3

For each distribution, we derive the estimates obtained by ML method and by MD method

along with Kolmogorov-Smirnov (K-S) statistic for goodness-of-fit test and the corresponding

p-value. In order to handle ties in the data set, simulated p-value is used for the K-S test. Un-

der ML approach, standard error (SE) of the estimators, Akaike information criterion (AIC),

Bayesian information criterion (BIC) are also obtained. The obtained results are presented in

Table 6.1. The results show that the p-values of both the models are reasonably high under

both ML and MD methods ensuring suitability of both the distributions for the current data

set. These results are further validated by the comparison between observed and expected

frequencies in Table 6.2. where expected frequencies for both the models commensurate well

with the observed frequencies.

A mechanical search (using 1000x1000 possible combinations of the two parameters)

for global maximum likelihood estimates correct up to 3 decimal places returns λ̂ = 1.151

and q̂ = 0.961, which justifies that L-BFGS-B algorithm performs almost accurately in the

case of ML estimation of CG(I). Similar search algorithm for MD estimation in case of CG(I)

gives λ̂ = 9.342 and q̂ = 0.993, and shows that MD approach may lead to multiple solutions

based on starting values depending on local optima. For simplicity, we have considered ML
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estimates as the starting values in the MD approach. Unfortunately, L-BFGS-B algorithm

does not converge if the start up value is chosen as λ̂ = 9.342 and q̂ = 0.993. Interestingly,

the choice of λ̂ = 9.342 and q̂ = 0.993 reduces the p-value of K-S test to 0.3969 but improves

the same of chi-squared test to 0.8152. That gives class frequencies as 20.65, 10.42, 5.48,

2.99, 1.70 and 2.76. However, two different sets of solutions do not change the nature of fit

drastically. A better algorithm for MDE could be an interesting future research problem.

In a similar manner, a mechanical search for global maximum likelihood estimates

of CG(II) returns λ̂ = 0.001 and q̂ = 0.947 which again establishes accuracy of L-BFGS-B

algorithm in case of ML estimation of CG(II). However, for the present data, estimate of

λ̂ hits the lower bound of L-BFGS-B algorithm in case of CG(II) model. Ordinary BFGS

gives estimates of λ̂ and q̂ as (0.000002, 0.9470) with the present data set which indicates

that the true value of λ may tend to 0, which, in turn, implies that the CG(II) converges

geometric distribution. This phenomenon is also observed from the observed and the expected

frequencies in Table 6.2. The mechanical search algorithm yields λ̂ = 1.68 and q̂ = 0.904 which

gives unusually poor fit to CG(II). Further, λ tends to zero, makes MD estimation of CG(II)

little unstable and dependent on the choice of initial value as optim function often returns a

local optima in R, as mentioned earlier.

In summary, K-S criterion suggests that CG(II) gives better fit to the raw data. How-

ever, if we consider group data with the class intervals as shown in Table 6.2., CG(I) gives a

better fit as per the chi-square criterion. Of course, chi-square statistic depends on the choice

of class intervals and can vary a bit. This example shows that there is no clear winner between

the CG(I) and the geometric distribution, but under certain situations as mentioned earlier,

CG(I) may give better fit to the data set than the geometric distribution.
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Table 6.1. ML and MD estimates of the parameters of CG(I) and CG(II) and related statistics

for the air-crash casualty data.

Distribution Method Estimates (λ̂, q̂) SEs (λ̂, q̂) AIC BIC K-S p-value

CG(I) ML (1.1168; 0.9606) (2.4368; 0.0004) 347.33 343.33 0.1319 0.3941

MD (0.1709; 0.9429) x x x 0.1280 0.4310

CG(II) ML (0.0100; 0.9469) (0.9790; 0.0002) 348.12 344.12 0.1050 0.6778

MD (0.0099; 0.9410) x x x 0.1206 0.5063

x: Not relevant

Table 6.2. Observed and expected frequencies of the air-crash casualty data.

No of Observed expected frequency

fatalities frequency CG(I) CG(I) geometric geometric CG(II) CG(II)

MLE MDE MLE MDE MLE MDE

(q̂ = 0.9469) (q̂ = 0.9396)

0-9 23 20.23 20.48 18.48 20.40 18.46 19.99

10-19 8 9.90 10.73 10.72 10.94 10.72 10.92

20-29 5 5.38 5.76 6.22 5.87 6.22 5.95

30-39 3 3.13 3.14 3.60 3.15 3.61 3.25

40-49 2 1.91 1.73 2.09 1.69 2.09 1.77

50 or More 3 3.45 2.14 2.89 1.95 2.88 2.12

Total 44

Chi Square 0.8390 1.492 2.144 1.8769 2.1634 1.7859

statistic p-value 0.8401 0.6839 0.7093 0.7584 0.5392 0.6180

7 Conclusion

In this paper, we have introduced two discrete distributions involving two parameters called

the compounded geometric (CG) distributions and named as CG(I) and CG(II) respectively.

Some statistical and reliability properties of both the distributions are derived with plots of

the pmfs and the hazard rates. Estimation by maximum likelihood method and by distance
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minimization method are discussed. Finally, both the distributions are fitted with a real data

set on casualties from plane crashes which show that the distributions have potential to be

used in various applications.

Intuitively, as λ approaches 0, a zero-truncated Poisson distribution becomes degen-

erate and assumes value 1 with probability 1. In such a case, subgroup size will also be a

degenerate random variable which will assume value 1 with probability 1. When only one

value is observed, eventually maximum and minimum is the same value and therefore both

CG(I) and CG(II) will be same, as λ approaches zero. In fact, in such a case, we will only

observe a sequence of geometric random variables and the information on subgroup size will be

redundant. That is, as λ approaches 0, both CG(I) and CG(II) converge its parent geometric

distribution. Further, when λ is large enough and p is also moderately large, most likely we

shall have larger subgroup sizes with a few observations as 0. Obviously, the minimum will

be 0 for most of the subgroups. As a consequence, CG(I) distribution will degenerate at 0.

Although, this phenomenon is not observed in CG(II) for large λ.

The present work leaves two interesting future research problems. Note that CG(I)

is DFR while CG(II) is IFR. It will be interesting to study the nature and the changing

pattern of the compounded distribution obtained by any arbitrary order statistics in place

of maximum or minimum. Another problem of worth considering is the simultaneous use of

maximum and minimum to develop a bivariate geometric Poisson distribution.

Acknowledgements: Authors are grateful to Mr. Richard Kebabjian, owner of the website
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Figure 2.A : pmf Plot for CG(I) Figure 2.B : pmf Plot for CG(II)

Figure 3.3.A : hrf Plot for CG(I) Figure 3.3.B : hrf Plot for CG(II)
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TABLE 5.1. Comparison of MLEs and MDEs of parameters of CG(I) Distribution Based on Monte Carlo Simulation  
 

λ �(= 1 − �) n Means of MLEs (�	, ��) 

Type equation here.
�������Type equation

SD of MLEs (�	, ��) Means of MDEs (�	, ��) SD of MDEs (�	, ��) 

3 0.91 10 3.5152; 0.8879 3.3417; 0.0653 5.5364; 0.9020 4.1603; 0.0732 

  25 3.8628; 0.9053 3.0719; 0.0458 5.5674; 0.9176 4.0173; 0.0513 

  50 4.3465; 0.9144 3.2997; 0.0422 5.2432; 0.9210 3.6682; 0.0434 

  100 4.6841; 0.9208 3.2724; 0.0389 4.7167; 0.9205 3.0466; 0.0380 

  500 3.9545; 0.9202 1.8994; 0.0287 3.5669; 0.9135 1.5877; 0.0278 

  1000 3.6277; 0.9178 1.3602; 0.0238 3.2520; 0.9101 1.1383; 0.0233 

       

 0.93 10 4.5607; 0.9227 4.2889; 0.0529 5.8978; 0.9282 4.1893; 0.0564 

  25 4.1341; 0.9286 3.4895; 0.0362 5.5686; 0.9377 3.8405; 0.0381 

  50 4.3048; 0.9329 3.3057; 0.0324 5.0032; 0.9396 3.1909; 0.0310 

  100 4.4150; 0.9369 3.0579; 0.0299 4.5138; 0.9394 2.5124; 0.0265 

  500 3.6763; 0.9362 1.5861; 0.0201 3.6910; 0.9358 1.3866; 0.0198 

  1000 3.4132; 0.9343 1.1167; 0.0166 3.4241; 0.9328 1.1495; 0.0188 

       

 0.95 10 5.4152; 0.9493 4.8003; 0.0389 6.1410; 0.9506 4.0187; 0.0408 

  25 4.6865; 0.9487 4.3336; 0.0289 5.4530; 0.9560 3.4835; 0.0264 

  50 4.1451; 0.9476 3.6769; 0.0260 4.6839; 0.9554 2.7139; 0.0218 

  100 3.9534; 0.9487 3.1502; 0.0235 4.2185; 0.9546 2.2051; 0.0193 

  500 3.2983; 0.9496 1. 4487; 0.0157 3.5754; 0.9530 1.2943; 0.0143 

  1000 3.1852; 0.9499 1.0651; 0.0123 3.3914; 0.9523 0.9763; 0.0119 

       

 0.97 10 4.4751; 0.9648 4.3229; 0.0229 5.3507; 0.9683 3.1849; 0.0245 

  25 2.8779; 0.9592 2.8595; 0.0181 4.4408; 0.9707 2.4479; 0.0157 

  50 2.5999; 0.9600 1.9078; 0.0161 3.8418; 0.9701 1.8963; 0.0128 

  100 2.7644; 0.9631 1.6344; 0.0143 3.2177; 0.9683 1.4353; 0.0097 

  500 3.0533; 0.9681 1.1400; 0.0094 2.6935; 0.9664 0.5724; 0.0050 

  1000 3.1050; 0.9694 0.8719; 0.0069 2.6326; 0.9662 0.3643; 0.0036 

       

5 0.91 10 3.0567; 0.8551 2.5542; 0.0724 4.8463; 0.8289 3.8083; 0.1015 

  25 4.1243; 0.8866 3.0995; 0.0581 5.2761; 0.8620 3.8863; 0.0797 

  50 5.0045; 0.9040 3.3867; 0.0513 5.5391; 0.8743 3.9589; 0.0712 

  100 5.4823; 0.9160 3.2057; 0.0444 5.8234; 0.8861 3.8355; 0.0655 

  500 5.3046; 0.9253 1.9501; 0.0296 5.0579; 0.8886 2.6222; 0.0536 

  1000 5.1239; 0.9269 1.3249; 0.0220 4.7715; 0.8899 1.9996; 0.0472 

       

 0.93 10 3.0771; 0.8572 2.6046; 0.0762 5.3253; 0.8714 4.1498; 0.0871 

  25 4.1413; 0.8868 3.1551; 0.0594 5.7998; 0.8971 4.2036; 0.0656 

  50 4.9511; 0.9045 3.3372; 0.0511 6.0119; 0.9071 4.1283; 0.0570 

  100 5.5958; 0.9180 3.2618; 0.0445 6.0426; 0.9128 3.8809; 0.0520 

  500 5.2424; 0.9255 1.9181; 0.0292 5.1000; 0.9142 2.4684; 0.0415 

  1000 5.1081; 0.9274 1.3282; 0.0222 4.9863; 0.9176 1.9409; 0.0363 

       

 0.95 10 3.8505; 0.9014 3.6440; 0.0615 6.0502; 0.9178 4.3438; 0.0651 

  25 4.2405; 0.9176 3.3466; 0.0449 5.9956; 0.9303 4.1376; 0.0459 

  50 4.9074; 0.9292 3.4374; 0.0386 5.7054; 0.9331 3.8344; 0.0396 

  100 5.3738; 0.9372 3.3306; 0.0342 5.2293; 0.9336 3.2541; 0.0352 

  500 5.1517; 0.9445 1.9411; 0.0228 4.4308; 0.9339 1.9226; 0.0275 

  1000 5.1241; 0.9474 1.3914; 0.0167 4.2525; 0.9337 1.5576; 0.0253 

       

 0.97 10 5.8701; 0.9520 4.9368; 0.0394 6.4033; 0.9532 4.1089; 0.0397 

  25 5.1786; 0.9516 4.5893; 0.0303 5.8148; 0.9595 3.4868; 0.0263 

  50 5.0388; 0.9530 4.2304; 0.0276 5.2442; 0.9597 2.9666; 0.0225 

  100 4.7922; 0.9542 3.6623; 0.0259 4.8486; 0.9599 2.4883; 0.0204 

  500 4.4794; 0.9601 1.9740; 0.0186 4.4268; 0.9615 1.5971; 0.0158 

  1000 4.6837; 0.9642 1.5167; 0.0142 4.4504; 0.9635 1.2659; 0.0125 
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TABLE 5.2. Comparisons of MLEs and MDEs of parameters of CG(II) Distribution Based on Monte Carlo Simulation 
 

 𝑞(= 1 − 𝑝) n Means of MLEs (𝜆 , 𝑞 ) SD of MLEs (𝜆 , 𝑞 ) Means of MDEs (𝜆 , 𝑞 ) SD of MDEs (𝜆 , 𝑞 ) 
3 0.91 10 4.1225; 0.8991 2.6322; 0.0298 3.8843; 0.8920 2.8639; 0.0358 

  25 3.4070; 0.9062 1.5063; 0.0186 3.4298; 0.9026 1.8148; 0.0213 

  50 3.1741; 0.9086 0.9799; 0.0130 3.1557; 0.9069 1.1485; 0.0150 

  100 3.0992; 0.9093 0.6587; 0.0090 3.0614; 0.9085 0.7668; 0.0105 

  500 3.0176; 0.9101 0.2922; 0.0040 2.9748; 0.9101 0.3224; 0.0046 

  1000 3.0093; 0.9100 0.2044; 0.0028 2.9742; 0.9102 0.2232; 0.0032 

       
 0.93 10 4.1668; 0.9203 2.6648; 0.0239 3.8593; 0.9150 2.8412; 0.0274 

  25 3.4209; 0.9262 1.4903; 0.0148 3.4364; 0.9236 1.7792; 0.0170 

  50 3.2257; 0.9276 0.9942; 0.0104 3.2188; 0.9264 1.1186; 0.0119 

  100 3.1266; 0.9285 0.6729; 0.0071 3.0845; 0.9282 0.7561; 0.0082 

  500 3.0446; 0.9294 0.2847; 0.0031 3.0022; 0.9293 0.3176; 0.0036 

  1000 3.0305; 0.9295 0.2049; 0.0022 2.9998; 0.9294 0.2198; 0.0024 

       
 0.95 10 4.1038; 0.9436 2.6594; 0.0175 3.9606; 0.9384 2.8863; 0.0208 

  25 3.4626; 0.9472 1.5207; 0.0107 3.4679; 0.9452 1.7489; 0.0123 

  50 3.1993; 0.9486 0.9612; 0.0073 3.2302; 0.9476 1.1330; 0.0085 

  100 3.1215; 0.9491 0.6585; 0.0052 3.0842; 0.9490 0.7458; 0.0057 

  500 3.0381; 0.9497 0.2892; 0.0023 3.0417; 0.9497 0.3229; 0.0025 

  1000 3.0252; 0.9498 0.2034; 0.0016 3.0404; 0.9498 0.2251; 0.0018 

       
 0.97 10 4.0492; 0.9659 2.6579; 0.0105 3.9121; 0.9626 2.7708; 0.0128 

  25 3.3954; 0.9682 1.5169; 0.0066 3.4606; 0.9670 1.8124; 0.0074 

  50 3.1348; 0.9691 0.9575; 0.0045 3.2329; 0.9685 1.1103; 0.0051 

  100 3.0486; 0.9695 0.6620; 0.0031 3.0995; 0.9694 0.7425; 0.0036 

  500 2.9631; 0.9699 0.2849; 0.0014 3.0431; 0.9698 0.3228; 0.0015 

  1000 2.9574; 0.9699 0.2040; 0.0010 3.0168; 0.9698 0.2274; 0.0010 

       
5 0.91 10 6.1029; 0.9033 3.0514; 0.0242 5.5673; 0.9010 3.1964; 0.0275 

  25 5.7322; 0.9055 2.1306; 0.0160 5.6174; 0.9050 2.4589; 0.0179 

  50 5.3470; 0.9076 1.3879; 0.0111 5.4395; 0.9064 1.7268; 0.0129 

  100 5.1908; 0.9083 0.8946; 0.0076 5.2374; 0.9083 1.1386; 0.0090 

  500 5.0476; 0.9093 0.3782; 0.0034 5.1006; 0.9094 0.4661; 0.0040 

  1000 5.0330; 0.9094 0.2676; 0.0024 5.0747; 0.9096 0.3230; 0.0028 

       
 0.93 10 6.1076; 0.9244 3.0669; 0.0193 5.5820; 0.9222 3.1538; 0.0217 

  25 5.6716; 0.9270 2.1158; 0.0126 5.6753; 0.9253 2.5163; 0.0147 

  50 5.3022; 0.9285 1.3653; 0.0088 5.4377; 0.9267 1.6739; 0.0100 

  100 5.1504; 0.9292 0.9116; 0.0062 5.2570; 0.9279 1.1361; 0.0072 

  500 5.0053; 0.9299 0.3755; 0.0027 5.0914; 0.9291 0.4653; 0.0030 

  1000 4.9965; 0.9299 0.2705; 0.0019 5.0733; 0.9292 0.3204; 0.0022 

       
 0.95 10 6.1885; 0.9459 3.0459; 0.0137 5.6378; 0.9438 3.1602; 0.0159 

  25 5.7006; 0.9481 2.1215; 0.0088 5.6799; 0.9463 2.4927; 0.0108 

  50 5.3788; 0.9489 1.3933; 0.0062 5.4157; 0.9479 1.6824; 0.0074 

  100 5.2127; 0.9494 0.9086; 0.0043 5.0553; 0.9496 0.4192; 0.0021 

  500 5.0671; 0.9500 0.3752; 0.0018 5.0553; 0.9496 0.4192; 0.0020 

  1000 5.0509; 0.9500 0.2662; 0.0013 5.0331; 0.9497 0.3153; 0.0015 

       
 0.97 10 6.2291; 0.9675 3.0642; 0.0084 5.4861; 0.9662 3.0329; 0.0096 

  25 5.7601; 0.9685 2.1467; 0.0054 5.4998; 0.9679 2.2705; 0.0063 

  50 5.4016; 0.9692 1.3888; 0.0038 5.4111; 0.9688 1.7154; 0.0044 

  100 5.2049; 0.9696 0.8984; 0.0026 5.3095; 0.9692 1.1223; 0.0031 

  500 5.0712; 0.9698 0.3787; 0.0011 5.1219; 0.9698 0.4827; 0.0013 

  1000 5.0458; 0.9699 0.2663; 0.0008 5.0811; 0.9699 0.3312; 0.0009 
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Appendix

Proof of Result 3.1: From (2.6), rth order raw moment (µ
′
r) of CG(I) can be obtained as

E(U r) =
1

eλ − 1

∞∑
u=0

ur(eλq
u − eλqu+1

)

Considering partial sum of the infinite series
∑∞

u=0 u
r(eλq

u − eλqu+1
), it can be easily shown

that the series diverges. As a consequence, for CG(I), moments of order r(≥ 1) and hence,

MRL function, do not exist for finite λ and for q (or p) ∈ (0, 1). Similar conclusion can be

drawn easily for CG(II).

Proof of Result 3.2.1: Using (3.3), first quartile (Q1), second quartile or median (µ̃) and

third quartile (Q3) of CG(I) can be derived as Q1 = 1
ln(q)

ln
(

1
λ

ln((3/4)eλ + 1/4)
)
− 1,

µ̃ = ln
(

1
λ

ln((1/2)eλ + 1/2)
)
− 1 and Q3 = 1

ln(q)
ln
(

1
λ

ln((1/4)eλ + 3/4)
)
− 1, resulting in

IQR = Q3 −Q1 = 1
ln(q)

ln

(
ln( 1

4
eλ+ 3

4)
ln( 3

4
eλ+ 1

4)

)
and b1X = (Q3−Q2)−(Q2−Q1)

(Q3−Q1)
=

ln

 ln( 1
4 e
λ+3

4). ln( 3
4 e
λ+1

4)
(ln( 1

2 e
λ+1

2))
2


ln

(
ln( 1

4 e
λ+3

4)
ln( 3

4 e
λ+1

4)

) .

Proof of Result 3.2.2: Using (3.5), first quartile (Q1), second quartile or median (µ̃) and

third quartile (Q3) of CG(II) can be derived as Q1 = 1
ln(q)

ln
(−1
λ

ln((3/4)e−λ + 1/4)
)
− 1,

µ̃ = ln
(−1
λ

ln((1/2)e−λ + 1/2)
)
− 1 and Q3 = 1

ln(q)
ln
(−1
λ

ln((1/4)e−λ + 3/4)
)
− 1, resulting in

IQR = Q3−Q1 = 1
ln(q)

ln

(
ln( 1

4
e−λ+ 3

4)
ln( 3

4
e−λ+ 1

4)

)
and b1X = (Q3−Q2)−(Q2−Q1)

(Q3−Q1)
=

ln

 ln( 1
4 e
−λ+3

4). ln( 3
4 e
−λ+1

4)
(ln( 1

2 e
−λ+1

2))
2


ln

(
ln( 1

4 e
−λ+3

4)
ln( 3

4 e
−λ+1

4)

) .

Proof of Result 3.3.1: Write a(x) = eλq
x+1−1

eλq
x−1

. Let us for the time being pretend that a(x)

is continuous in its domain and it is sufficiently differentiable. Then, differentiating a(x) with

respect to x, we get

a
′
(x)

sign
= (eλq

x+1 − 1)eλq
x − (eλq

x − 1)qeλq
x+1

= yq+1 − y − qyq+1 + qyq,

where y = eλq
x

and y ≥ 1. Now, writing b(y) = yq+1 − y − qyq+1 + qyq, we see, b
′
(y)

sign
=

q2yq−1(1−y)−(1−yq) = c(y), say. Further, c
′
(y)

sign
= qyq−1d(y) where d(y) = q(q−1)/y−q2+1,

which is increasing in y ∈ [1, eλ], giving that d(y) > 0 for all y. Thus, a′(x) > 0 for all x, which

implies that a(x) is increasing in x giving that h(x) is decreasing x. Hence, CG(I) distribution

is DFR.

Proof of Result 3.3.2: Expression (3.8) may be alternately written as h∗(x; q, λ) = eλpq
x−1

eλqx−1
.
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As before, if we pretend same about the nature of the function h∗, then differentiating h∗

with respect to x, we get, d
dx

(h∗(x; q, λ)) = λqx log q
[
eλq

x(1+p)(p− 1)− eλqx(1− pe−λpqx)
]
> 0

as log q < 0, (p − 1) < 0 and (1 − pe−λpqx) > 0, h∗(x; q, λ) is increasing in x. Hence, CG(II)

distribution is IFR.
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