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Abstract: A unified approach is proposed in this paper to study a family of lifetime distribu-

tions of a system consisting of random number of components in series and in parallel. While

the lifetimes of the components are assumed to follow generalized (exponentiated) Weibull dis-

tribution, a zero-truncated Poisson is assigned to model the random number of components

in the system. The resulting family of compounded distributions describes several well-known

distributions as well as some new models with some of their statistical and reliability prop-

erties. Various ageing classes of life distributions including increasing, decreasing, bath-tub,

upside-down-bathtub and roller coaster shaped failure rates are covered by the family of com-

pounded distributions. The simplest algorithm for maximum likelihood method of estimation

of the model parameters is discussed. Some numerical results are obtained via Monte-Carlo

Simulation. The asymptotic variance-covariance matrices of the estimators are also obtained.

Five different real data sets are used to validate the distributions and the results demon-

strate that the family of distributions can be considered as a suitable model under several real

situations.
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1 Introduction

Lifetime data modeling in the literature of reliability analysis is studied extensively by sev-

eral researchers with the help of different lifetime distributions which are mainly based on

some modifications and generalizations of exponential or Weibull distributions. While this



modification is carried out in some of the life distributions through exponentiation viz. Ex-

ponentiated or Generalized Exponential (GE) distribution (e.g. Gupta and Kundu, 1999),

Exponentiated Weibull (EW) distribution (e.g. Mudholkar and Srivastava, 1993; Mudholkar

et al., 1995; Mudholkar and Hutson, 1996; Nassar and Eissa, 2003; Nadarajah and Kotz,

2006), there are others where lifetime distributions are compounded with distribution of un-

known number of components yielding a new class of life distributions viz. Exponential-

Geometric (EG) distribution (Adamidis and Loukas, 1998), Extended Exponential-Geometric

(EEG) distribution (Adamidis et al., 2005), Exponential-Poisson (EP) distribution (Kus,

2007), Exponential-Logarithmic (EL) distribution (Tahmasbi and Rezaei, 2008), Exponen-

tiated Exponential-Poisson (EEP) distribution (Barreto-Souza and Cribari-Neto, 2009), Gen-

eralized Exponential-Geometric (GEG) distribution (Rodrigo et al., 2010), Weibull-Geometric

(WG) distribution (Barreto-Souza et al., 2011), Weibull-Poisson (WP) distribution (Hemmati

et al., 2011), Exponentiated Weibull-Poisson (EWP) Distribution (Mahmoudi and Sepahdar,

2013).

Consider a system consists of K components in series such that the system fails if

at least one of the K units fails. Hence, the failure time distribution of the system is the

distribution of the failure time of the first (the one with minimum lifetime) out of the K

components. In contrast, if the components are in parallel, the failure time distribution of the

system is the failure time distribution of the last (the one with maximum lifetime) of the K

components. In this context, it is interesting to note that most of the works on compounded

distributions associated with exponential or Weibull models are based on the assumption that

the components are in series. The compounded exponential or Weibull type distributions with

components in parallel are largely overlooked. Unlike the previous works, in this paper, we

consider both systems with components in series and parallel to study a family of compounded

distribution. As in Mahmoudi and Sepahdar (2013), we consider that the lifetime of each of

the system components is independently and identically distributed as exponentiated Weibull

and the number of components in the system follows a zero truncated Poisson model. It is

shown that irrespective of the system alignments, namely, series or parallel, the compounded

distribution can be represented in a unified manner with the help of an additional parameter.

Moreover, several well-known distributions can be obtained as special cases of the

proposed family of distributions viz. EP (Kus, 2007), EEP(Barreto-Souza and Cribari-Neto,
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2009) and WP (Hemmati et al., 2011) in the series system and several other new distributions

in parallel system, which, to the best of our knowledge, are not studied in the literature before.

This family of distributions has increasing, decreasing, bath-tub, up-side-down bathtub and

roller coaster hazard functions. The proposed family of distributions encompasses better fits

to many real data sets including one used by Hemmati et al., 2011.

The rest of the paper is organized as follows. In Section 2, compounded generalized

Weibull Poisson type distributions are obtained for series and parallel systems and are pre-

sented in a unified manner. In Section 3, various properties of these distributions are discussed.

Parameters of the distributions are estimated in Section 4 by the maximum likelihood method

through a simulation study, and asymptotic variances and covariances of maximum likelihood

estimators (MLEs) are obtained. Five real life examples are provided in Section 5 with a

detailed compar- ison with the other competitive distributions. Finally, Section 6 concludes

the manuscript.

2 The Generalized Weibull Poisson Distribution

The Exponentiated Weibull distribution with scale parameters λ > 0 and shape parameters

γ > 0, α > 0, denoted as EW (λ, γ, α), has the following probability density function (PDF):

gw(w;λ, γ, α) = αγλγwγ−1e−(λw)
γ [

1− e−(λw)γ
]α−1

;w, λ, γ, α > 0 (2.1)

with cumulative distribution function (CDF)

GW (w | λ, γ, α) =
[
1− e−(λw)γ

]α
;w, λ, γ, α > 0 (2.2)

Let W1,W2, ...,WK be independently and identically distributed (iid) failure times of K com-

ponents in series following EW (λ, γ, α) and K be a zero-truncated Poisson variable with pmf

given by

P (k;µ) =
e−µµk

k!(1− e−µ)
; k ∈ N , µ > 0 (2.3)

where N is the set of natural numbers. The motivation behind the use of the zero-truncated

Poisson distribution (to model counts) is that it has been used in many popular applications,

viz., to model (i) number of illegal immigrants in four large cities in the Netherlands (Heijden

et al., 2003), (ii) mental health services data (Elhai et al., 2008), (iii) word or species frequency
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count data (Ginebra and Puig, 2010), and (iv) fertility trait phenotypes (Xu and Hu, 2011).

Assuming that random variables W and K are independent and θ = (µ, λ, γ, α), we define

X = min
1≤i≤K

Wi

to model failure time distribution of a system of components in series.

Then the conditional distribution of (X | K = k) is given by

fX(x | k) = zαγλγxγ−1e−(λx)
γ (

1− e−(λx)γ
)α−1 [

1− (1− e−(λx)γ )α
]k−1

;x, λ, γ, α > 0 (2.4)

with the unconditional probability density function (pdf) of X as

f(x; θ) = µαγλγ(1− e−µ)−1xγ−1e−(λx)
γ [

1− e−(λx)γ
]α−1

e−µ[1−e
−(λx)γ ]

α

;x, λ, γ, α > 0 (2.5)

Hereafter, the distribution of X is referred to as the Generalized Weibull Poisson distribution

of Type-I and is denoted by GWP(I).

In this context, it may be interesting to note that, for a system of parallel components, writing

Y = max
1≤i≤K

Wi,

we get another type of GWP distribution, as obtained by Mahmoudi and Sepahdar, 2013, say

GWP distribution of Type-II and may be denoted by GWP(II). Using Equations 2.1-2.3, we

get conditional pdf of GWP(II) as

gY (x | k) = zαγλγxγ−1e−(λx)
γ [

1− e−(λx)γ
]αk−1

;x, λ, γ, α > 0 (2.6)

One can easily check that the unconditional pdf of GWP(II) is given by

g(x; θ) = µαγλγe−µ(1− e−µ)−1xγ−1e−(λx)
γ [

1− e−(λx)γ
]α−1

eµ[1−e
−(λx)γ ]

α

;x, λ, γ, α > 0 (2.7)

At this junction, we have unified GWP(I) and GWP(II) as derived in (2.5) and (2.7), through

a parameter c to yield the following distribution and will be named GWP hereafter.

f ∗(x; θ) = µαγλγe−cµ(1− e−µ)−1xγ−1e−(λx)
γ [

1− e−(λx)γ
]α−1

e(−1)
c+1µ[1−e−(λx)γ ]

α

;

x, λ, γ, α > 0; c = 0, 1 (2.8)

We get GWP(I) and GWP(II) distributions for c = 0 and c = 1 respectively. Now onwards,

distribution(I) and distribution(II) would refer to the distribution of failure time of a system
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consisting of components in series and parallel respectively. Moreover, GWP(I) and GWP(II)

together will be called GWP distribution as mentioned earlier. All the results derived in the

next sections are based on GWP and hence we get properties of GWP(I) and GWP(II) on

substituting c by 0 and 1 respectively. It is to be noted that all the results obtained at c = 1

can be found in Mahmoudi and Sepahdar, 2013.

The following values of the parameters are of particular interest as they produce many

existing and new lifetime distributions: (i) γ = 1, GWP reduces to EEP distribution, hence

GWP(I) reduces to EEP(I) and GWP(II) reduces to EEP(II); (ii) γ = 2, the GWP(I) and

GWP(II) reduce to generalized Rayleigh-Poisson GRP(I) and GRP(II) respectively, (iii) α = 1,

GWP(I) corresponds to WP(I) (Hemmati et al., 2011) and GWP(II) reduces to WP(II), (iv)

α = 1 and γ = 1, GWP(I) and GWP(II) reduce to EP(I) and EP(II) respectively, (v)

α = 1 and γ = 2, GWP(I) and GWP(II) reduce to Rayleigh-Poisson RP(I) and RP(II)

respectively and (vi) as µ approaches zero, both of GWP(I) and GWP(II) reduce to EW;

Moreover, results in (i) and (vi) together yield exponentiated exponential distribution and (ii)

and (vi) yield generalized Rayleigh distribution. It is now evident that the present paper not

only proposes GWP distribution, but introduces several others including EEP(II), GRP(I),

GRP(II), WP(II), EP(II) and RP(II).

It can be easily shown that the GWP distribution can be expressed as an infinite

mixture of exponentiated Weibull distribution with the same scale parameter λ and shape

parameters γ and α(j + 1), j=0,1,2,...

It is evident that both the pdf’s tend to zero as x → ∞. Further, it is clear from

Figure 2. that both GWP(I) and GWP(II) are either decreasing or unimodal. The shape of

the pdfs of GWP(I) and GWP(II) are also illustrated in this figure.

<Figure 2. HERE.>
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3 Properties of the distribution

3.1 Distribution function and moments

The CDF of GWP is derived from (2.8) and is given by

F (x; θ) =
(−1)c+1e−cµ

[
e(−1)

c+1µ(1−e−(λx)γ )
α

− 1
]

1− e−µ
; x > 0, c = 0, 1 (3.1)

As an immediate consequence, quantile function (ξp), of the GWP can be derived as

ξp =
−1

λ

[
ln

{
1−

(
(−1)c+1

µ
ln
(
1 + (−1)c+1ecµ(1− e−µ)p

))1/α
}]1/γ

, c = 0, 1 (3.2)

For r ∈ N , the rth order raw moments of the GWP can be obtained from (2.8) as follows:

µ
′

r =
κΓ(r/γ + 1)

λr

∞∑
j=0

[
(−1)(c+1)jµj

j!

{
1 +

∞∑
i=1

(
ηi(i+ 1)−(r/γ+1)

)}]
, c = 0, 1 (3.3)

where κ = µαe−cµ

(1−e−µ) , ηi =
∏∞

l=0
(−1)i(υ−l)

i!
; i = 1, 2, ... and υ = α(1+j)−1.

∑∞
i=1

(
ηi(i+ 1)−(r/γ+1)

)
is convergent for α(1 + j) > 0. Expression in (3.3) allows us to derive coefficient of variation

(CV), measure of skewness (γ1) and measure of kurtosis (γ2) of the GWP distribution as

follows:

CV = κ−1/2

[
(Γ2S2(µ, γ)− κ(Γ1)

2(S1(µ, γ))2)
1/2

(Γ1S1(µ, γ))

]

γ1 = κ−1/2

[
Γ3S3(µ, γ)− 3κΓ2Γ1S1(µ, γ)S2(µ, γ) + 2κ2 (Γ1)

3 (S1(µ, γ))3(
Γ2S2(µ, γ)− κ (Γ1)

2 (S1(µ, γ))2
)3/2

]

γ2 = κ−1

[
Γ4J4(µ, γ)− 4κΓ3Γ1S3(µ, γ) + 6κ2Γ2 (Γ1)

2 S2(µ, γ) (S1(µ, γ))2 − 3κ3 (Γ1)
4(

Γ2S2(µ, γ)− κ (Γ1)
2 (S1(µ, γ))2

)2
]
− 3

(3.4)

where Γr = Γ(r/γ + 1) and Sr(µ, γ) =
∑∞

j=0

[
(−1)(c+1)jµj

j!

{
1 +

∑∞
i=1

(
ηi(i+ 1)−(r/γ+1)

)}]
, r =

1, 2, 3, 4. It is to be noted that properties of GWP(I) and GWP(II) are obtained by taking

c = 0 and 1 respectively.
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3.2 Survival and Hazard functions

Survival functions of the GWP is derived as follows.

S(x; θ) =
1− e−µ − e−cµ(−1)c+1

{
e(−1)

c+1µ(1−e−(λx)γ )α − 1
}

1− e−µ
;x > 0, c = 0, 1. (3.5)

Consequently, hazard function of the GWP is obtained as

h(x; θ) =
µαγλγxγ−1e−{(λx)

γ+cµ} [1− e−(λx)γ]α−1 e(−1)c+1µ[1−e−(λx)γ ]
α

1− e−µ − e−cµ(−1)c+1
{
e(−1)c+1µ(1−e−(λx)γ )α − 1

} ; x > 0, c = 0, 1. (3.6)

Mean Residual life (MRL) of the GWP distribution is given by

m(x0; θ) = Eθ(X − x0 | X ≥ x0) =
1

S(t)

∫ ∞
x0

(x− x0)f(x)dx (3.7)

which yields

m(x0; θ) =
κ

λ

∞∑
j=0

[
(−1)(c+1)jµj

j!

{
Γ(λx0)γ (1/γ + 1)

+
∞∑
i=1

(
ai(i+ 1)−(1/γ)Γ(i+1)(λx0)γ (1/γ + 1)

)
; c = 0, 1,

(3.8)

where Γx(n) represents the incomplete gamma integral given by

Γx(n) =

∫ x

0

e−vvn−1dv (3.9)

The shape of the hazard functions of GWP(I) and GWP(II) are illustrated in Figure 3. It

is observed that the failure rate of GWP(I) can take all shapes viz. increasing, decreasing,

bath-tub, upside-down bath-tub and roller coaster depending on the values of the parameters

as opposed to the mostly used lifetime distributions available in the literature. On the other

hand, GWP(II) can exhibit increasing, decreasing and upside-down bath-tub shaped failure

rates.

<Figure 3. HERE.>
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4 Estimation of the parameters

Here, we consider estimation of the unknown parameters of the GWP distribution by the

method of maximum likelihood. Let x1, x2, ..., xnbe a random sample of size n drawn from

(2.8) with parameters θ = (µ, λ, γ, α). Then the log-likelihood functions, L(θ) for GWP can

be written as

L(θ) = n log µ+ n logα + n log γ + nγ log λ− ncµ+
n∑
i=1

(γ − 1) log xi −
n∑
i=1

(λxi)
γ+

n∑
i=1

(α− 1) log(1− e−(λxi)γ ) + (−1)c+1µ

n∑
i=1

(
1− e−(λxi)γ

)α − n log(1− e−µ); c = 0, 1

(4.1)

The likelihood equations are

δL

δµ
= n/µ− n

(
c+

1

eµ − 1

)
+ (−1)c+1

n∑
i=1

Ci

δL

δλ
= nγ/λ+ γ

n∑
i=1

[
(λxi)

γ−1xi

(
−1 +

(α− 1)Bi

1−Bi

+ (−1)c+1µα
BiCi

1−Bi

)]
δL

δγ
= n/γ + n log λ+

n∑
i=1

log xi +
n∑
i=1

[
AiDi

(
−1 +

(α− 1)Bi

1−Bi

+ (−1)c+1µαBi(1−Bi)
α−1
)]

δL

δα
= n/α +

n∑
i=1

[
(1 + (−1)c+1µCi) log(1−Bi)

]
(4.2)

where c = 0, 1 ; Ai = (λxi)
γ ; Bi = e−Ai ; Ci = (1−Bi)

α ; Di = log(λxi)

The maximum likelihood estimators (MLE) of θ, say θ̂, are the simultaneous solutions of the

likelihood equations (4.2). Since no closed form expressions for the mle’s of θ are available

from the expressions (4.2), we go for simulation study, which is detailed in subsection 4.2.

4.1 Asymptotic variance-covariance matrix of the MLE’s

The MLE’s of θ = (µ, λ, γ, α) = (θ1, θ2, θ3, θ4), say θ̂ = (µ̂, λ̂, γ̂, µ̂) can be considered to follow

approximately multivariate normal with mean θ and a variance-covariance matrix I−1 where
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I = I(θ, xobs) is the Fisher information matrix for the estimators of (µ, λ, γ, α) with elements

Ii,j = E (Mi,j) with i, j = 1, 2, 3, 4 where Mi,j = − δ2L
δθiθj

. By differentiating expressions in (4.2)

we get Mi,j’s as

Mµµ =
n

µ2
− neµ

(eµ − 1)2

Mλλ =
nγ

λ2
+
γ(γ − 1)

λ2
J200(000)0 +

γ(α− 1)

λ2
J210(101)0

− µαγ(2γ − 1)

λ2
J210(111)0 −

γ2(α− 1)(1− µα)

λ2
J220(102)0

Mγγ =
n

γ2
+ J102(000)0 − (α− 1)(J112(101)0 − J212(101)0 + J222(111)0)− µαJ112(111)0

Mαα =
n

α2
− µJ000(110)2

Mµλ =
−αγ
λ

J110(111)0

Mµγ = −αJ111(111)0

Mµα = −J000(110)1

Mλγ =
−n
λ

+
1

λ
J100(000)0 −

α− 1

λ
J110(101)0 −

µα

λ
J110(111)0 +

γ

λ
J101(000)0 −

(α− 1)γ

λ
J111(101)0

− µαγ

λ
J111(111)0 +

(α− 1)γ

λ
J211(101)0 −

(α− 1)γ

λ
J221(102)0 −

µαγ

λ
(J211(111)0 + J110(111)1)

Mλα =
−γ
λ
J110(101)0 −

γµα

λ
J110(111)1 −

µγ

λ
J110(111)0

Mγα = J111(101)0 − µJ111(111)0 − αµJ111(111)1

(4.3)

where Jjkl(mpq)r = (−1)c+1
∑n

i=1(λxi)
jγe−(λxi)

kγ
(log(λxi))

l(1−e−(λx)γ )m(pα−r)(log(1−e−(λx)γ ))r,
c = 0, 1; j, k, l, q, r ∈ {0, 1, 2} and m, p ∈ {0, 1}. Expectation is taken with respect to the

distribution of GWP as in (2.8) and can be easily computed by R software. Then the inverse

of I(θ) evaluated at θ provides the asymptotic variance-covariance matrix of the MLE’s.

4.2 Simulation study

As mentioned earlier, it is not feasible to solve the equations in (4.2) explicitly in order to

get MLE’s for the family of GWP distributions. However, one can easily find the numerical

solution applying some suitable optimization techniques. In the present context, we use in-

built spg function in R.3.0 software for numerical minimization of negative of log-likelihood

function. We carry out detailed simulation studies to capture the means and the standard
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deviations (SD) of the MLE’s of θ = (µ, λ, γ, α). Five thousand replicates of Monte-Carlo

experiments of size 50, 100 and 500 are considered in the present investigation for each of the

six sets of θ. The results from simulated data sets are reported in Tables 4.1. and 4.2. The

results show that the estimates are quite stable around the assumed values of θ and moreover,

standard errors of the MLEs decrease when sample size increases.

<Tables 4.1. and 4.2. HERE.>

5 Applications

This paper is greatly motivated by some empirical findings based on real data sets through

which our proposed models outperform many other models present in the literature. For

comparison purposes, we consider some well known real data sets from different literature on

lifetime distributions viz. 100 uncensored observations on breaking stress of carbon fibers(in

Gba)(Nichols and Padgett (2006)), 63 records on strengths of 1.5 cm glass fibres measured

at the National Physical Laboratory, England (Smith and Naylor), 101 observations of the

fatigue life of 6061-T6 aluminium coupons cut parallel to the direction of rolling and oscillated

at 18 cycles per second (Birnbaum and Saunders (1969)) and data on the number of million

revolutions before failure for each of the 23 ball bearings (Lawless; 1986, page 228). Moreover,

we consider remission times (in months) of a random sample of 128 bladder cancer patients

(Lee and Wang (2003)), probably not used in the context of lifetime distribution before. To

carry out comparison of the performance of our proposed models, we have considered some

alternative models viz. WP (θ = (µ, λ, γ)), GEP (θ = (µ, λ, α)) and EW (θ = (λ, γ, α)).

For each data set, we derive the maximum likelihood estimates, Akaike information criterion

(AIC), Bayesian information criterion (BIC), Kolmogorov-Smirnov statistic and the corre-

sponding p-value for each of the distributions. Next, we show the results in detail for each of

the data sets individually.

First Application:

Here, we consider a real data set from Nichols and Padgett (2006) consisting of 100

uncensored observations on breaking stress of carbon fibers(in Gba). The obtained results

are presented in the following table, where the values in the body of the table represents the
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parameter estimates and related statistics obtained from the fit of each of the four distributions

for the breaking stress data.

Distribution Estimates Log-likelihood AIC BIC K-S p-value

GWP(I) (4.629, 0.479, 6.066, 0.202) -141.142 288.3 296.1 0.0609 0.8524

GEP(I) (1.186,5.734,0.893) -147.432 300.9 308.7 0.1054 0.2162

WP(I) (10.887, 2.987,0.157) -141.281 288.6 296.4 0.0634 0.8159

EW (9.183,0.995,1.087) -146.550 299.1 306.9 0.1108 0.1715

GWP(II) (15.808, 0.407, 2.189, 0.110) -141.317 288.6 296.4 0.0647 0.7969

GEP(II) (3.473,4.599,1.238) -142.837 291.7 299.4 0.0872 0.4353

WP(II) (3.373,1.810,0.509) -141.544 289.1 296.9 0.0615 0.8442

Second Application:

Another real data set is considered here, which represents remission times (in months)

of a random sample of 128 bladder cancer patients reported in Lee and Wang (2003). Bladder

cancer is a disease in which abnormal cells multiply without control in the bladder. The most

common type of bladder cancer recapitulates the normal histology of the urothelium and

is known as transitional cell carcinoma. The obtained results are presented in the following

table, where the values in the body of the table represents the parameter estimates and related

statistics obtained from the fit of each of the four distributions for the remission time data.

Distribution Estimates Log-likelihood AIC BIC K-S p-value

GWP(I) ( 3.569, 1.672, 0.888, 0.065) -409.745 825.5 834.0 0.0373 0.9942

GEP(I) (1.559,1.458,0.101) -411.006 828.0 836.6 0.0474 0.9361

WP(I) (6.614,1.236,0.026) -410.668 827.3 835.9 0.0471 0.9387

EW (6.346,0.236,4.841) -451.085 908.2 916.7 0.1985 0.0084

GWP(II) (5.413,2.989, 0.407, 2.613) -409.627 825.2 833.8 0.0293 0.9992

GEP(II) (6.237,1.218, 0.121) -413.078 832.2 840.7 0.0725 0.5121

WP(II) (7.222,0.506,0.852) -409.785 825.6 834.1 0.0342 0.9983

Other Applications:
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For the next three data sets, distributions with higher p-values are considered for

brevity. First block of the following table gives results from strength data. Results on the

basis of data from Lawless are shown in the second block of the same table whereas the last

block demonstrates results from over dispersed data on the fatigue life. Details of these data

sets are already discussed earlier.

Distribution Estimates Log-likelihood AIC BIC K-S p-value

Block1 GWP(I) (26.815,0.664,8.781) -15.187 36.4 42.8 0.1508 0.1052

GWP(II) (2.784,0.577,5.503) -12.981 31.9 38.4 0.1145 0.3538

WP(II) (2.386,4.484,0.694) -13.474 32.9 39.4 0.1216 0.2851

EW (0.676,7.255,0.582) -14.676 35.3 41.8 0.1445 0.1302

Block2 GWP(II) (11.026,0.831,0.0524) -113.035 232.1 235.5 0.1052 0.9380

WP(II) (2.582,6.692,0.772,0.070) -113.087 232.2 235.6 0.1069 0.9301

Block3 GWP(II) (1.417,6.596,2.663,0.012) -455.8907 915.8 924.6 0.0702 0.7017

WP(II) (9.516,2.733,0.011) -455.7802 917.6 925.4 0.0839 0.4751

As we can see, the smallest values of the AIC, BIC and Kolmogorov-Smirnov statistic, and the

largest value of p are obtained only for the GWP distribution. It is also observed in the case

of data set from Nichols and Padgett (2006) that GWP(I) outperforms all other distributions

including WP(I) which was shown to give best fit to the same data as reported earlier by

Hemmati et. al. (2011). Even, WP(II), being another new distribution as proposed in this

paper performs more or less as competitive as GWP for all the data sets in comparison with

the other distributions. While for the case of remission data, GWP(I), GWP(II) and WP(II)

perform nearly similarly, it is GWP(II) which performs better for the rest of the data sets.

So, it may be easily concluded that this family of unified compounded distributions provide

the best fit among the other considered distributions.

7 Conclusion

Acknowledgements:

12



References

1. Adamidis, K. and Loukas, S. (1998). A life time distribution with decreasing failure

rate, Statistics and Probability Letters, 39, pp. 35-42

2. Adamidis, K., Dimitrakopoulou, T. and Loukas, S. (2005). On a generalization of the

exponential-geometric distribution, Statistics and Probability Letters, 73, pp. 259-269.

3. Barreto-Souza W. and Cribari-Neto F. (2009). A generalization of the exponential-

Poisson distribution, Statistics and Probability Letters, 79, pp. 2493-2500

4. Barreto-Souza W., A.L. de Morais and G.M. Cordeiro (2011). The Weibull-geometric

distribution, Journal of Statistical Computation and Simulation, 81(5), pp. 645-657.

5. Birnbaum, Z.W. and Saunders, S.C. (1969). Estimation for a family of life distributions

with applications to fatigue, Journal of Applied Probability, 6, pp. 328-347.

6. Elhai, J.D., Calhoun, P.S. and Ford, J.D. (2008). Statistical procedures for analyzing

mental health services data, Psychiatry Research, 160, pp. 129-136

7. Ginebra, J. and Puig, X. (2010). On the measure and the estimation of evenness and

diversity, Computational Statistics and Data Analysis, 54, pp. 2187-2201

8. Gupta, R.D., Kundu, D. (1999). Generalized exponential distributions, Australian and

New Zealand Journal of Statistics, 41 (2), pp. 173-188.

9. Hemmati, H., Khorram, E. and Rezakhah, S. (2011): A new three-parameter ageing

distribution, Journal of Statistical Planning and Inference, 141, pp. 2266-2275.

10. Kus, C. (2007). A new life time distribution, Computational Statistics and Data Anal-

ysis, 51, pp. 4497-4509.

11. Lawless, J.F. (1982). Statistical Models and Methods for Lifetime Data, John Wiley

and Sons, New York.

12. Lee, E.T. and Wang, J. (2003). Statistical Methods for survival data analysis, John

Wiley and Sons, New York.

13



13. Mahmoudi, E. and Sepahdar, A. (2013). Exponentiated Weibull-Poisson distribution:

Model, properties and applicatios, Journal of Mathematics and Computer in Simulation,

92, pp. 76-97

14. Mudholkar, G.S. and Hutson, A.D. (1996). The Exponentiated Weibull Family: Some

Properties and a Flood Data Application, Communications in Statistics-Theory and

Methods, 25(12), pp. 3059-3083

15. Mudholkar, G.S. and Srivastava, D.K. (1993). Exponentiated Weibull family for ana-

lyzing bathtub failure-rate data, IEEE Transactions on Reliability, 42, pp. 299 - 302.

16. Mudholkar, G.S., Srivastava, D.K. and Friemer, M. (1995). The exponential Weibull

family: a re analysis of the bus-motor-failure data, Technometrics, 37, pp. 436-445.

17. Nadarajah, S. and Kotz, S (2006). The beta exponential distribution, Reliability Engi-

neering and System Safety, 91, pp. 689-697

18. Nassar, M.M. and Eissa, F.H. (2003). On the exponentiated Weibull distribution, Com-

munications in Statistics-Theory and Methods, 32, pp. 1317-1333.

19. Nichols, M.D. and Padgett, W.J. (2006). A bootstrap control chart for Weibull per-

centiles, Quality and Reliability Engineering International, 22, pp. 141-151.

20. R Development Core Team (2011). R: A Language and Environment for Statistical

Computing. R Foundation for Statistical Computing, Vienna, Austria. ISBN 3-900051-

07-0.

21. Rodrigo, B. Silva., Wagner, Barreto-Souza. and Gauss, M. Cordeiro. (2010). A new

distribution with decreasing, increasing and upside-down bathtub failure rate, Compu-

tational Statistics and Data Analysis, 54, pp. 935-944.

22. Smith, R.L. and Naylor, J.C. (1987). A comparison of maximum likelihood and Bayesian

estimators for the three-parameter Weibull distribution, Applied Statistics, 36, pp. 358-

1987.

23. Tahmasbi, R. and Rezaei, S. (2008). A two-parameter life time distribution with de-

creasing failure rate, Computational Statistics and Data Analysis, 52, pp. 3889-3901.

14



24. Xu, S. and Hu, Z. (2011). Mapping quantitative trait loci using the MCMC procedure

in SAS, Heredity, 106, pp. 357-369

15



0 1 2 3 4 5

0
.0

0
.4

0
.8

GWP(I)(γ = 0.5, µ = 0.5)

x

p
d

f

0.0 1.0 2.0 3.0

0
.0

0
.5

1
.0

1
.5

GWP(I)(γ = 2, µ = 0.5)

x

p
d

f

0 1 2 3 4 5

0
.0

0
.5

1
.0

1
.5

GWP(I)(γ = 0.5, µ = 5)

x

p
d

f

0.0 0.5 1.0 1.5 2.0 2.5

0
.0

1
.0

2
.0

GWP(I)(γ = 2, µ = 5)

x

p
d

f

0 5 10 15

0
.0

0
0

.1
0

0
.2

0

GWP(II)(γ = 0.5, µ = 0.5)

x

p
d

f

0.0 1.0 2.0 3.0

0
.0

0
.4

0
.8

1
.2

GWP(II)(γ = 2, µ = 0.5)

x

p
d

f

0 5 10 15

0
.0

0
0

.1
0

0
.2

0
GWP(II)(γ = 0.5, µ = 5)

x

p
d

f

0.0 1.0 2.0 3.0
0

.0
0

.5
1

.0
1

.5

GWP(II)(γ = 2, µ = 5)

x

p
d

f

—— α = 0.5 ;h α = 1 ; · · · · · α = 3 ; · − · − α = 5

Figure 2. : Probability density functions of the GWP(I) and GWP(II)

distributions

16



0 1 2 3 4 5

0
.0

0
.2

0
.4

GWP(I)(γ = 0.5, µ = 0.5)

x

H
a

z
a

r
d

 R
a

te

0.0 1.0 2.0 3.0

0
1

2
3

4
5

GWP(I)(γ = 2, µ = 0.5)

x

H
a

z
a

r
d

 R
a

te

0 1 2 3 4 5

0
.0

1
.0

2
.0

GWP(I)(γ = 0.5, µ = 5)

x

H
a

z
a

r
d

 R
a

te

0 1 2 3 4

0
1

2
3

4
5

6

GWP(I)(γ = 2, µ = 5)

x

H
a

z
a

r
d

 R
a

te

0 5 10 15

0
.0

0
0

.1
0

0
.2

0
0

.3
0

GWP(II)(γ = 0.5, µ = 0.5)

x

H
a

z
a

r
d

 R
a

te

0.0 0.5 1.0 1.5 2.0

0
.0

1
.0

2
.0

3
.0

GWP(II)(γ = 2, µ = 0.5)

x

H
a

z
a

r
d

 R
a

te

0 50 100 150

0
.0

0
0

.1
0

0
.2

0
GWP(II)(γ = 0.5, µ = 5)

x

H
a

z
a

r
d

 R
a

te

0.0 1.0 2.0 3.0
0

1
2

3
4

5

GWP(II)(γ = 2, µ = 5)

x

H
a

z
a

r
d

 R
a

te

—— α = 0.5 ;h α = 1 ; · · · · · α = 3 ; · − · − α = 5

Figure 3. : Hazard functions of the GWP(I) and GWP(II) distributions
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TABLE 4.1. Comparison of MLEs of parameters of GWP(I) Distribution Based on Monte Carlo Simulation  
 

𝜇,𝛼, 𝛾, 𝜆 n MLEs 

(GWPMMMMMMndbcndmnbcML

EMLEsType equation here. 
  𝑞𝑞𝑞𝑞𝑞Type equation here. 

SD of MLEs  

5, 0.5, 0.5, 0.5 

50 4.9304; 0.4869; 0.4884; 0.4869 
 
 
 

 
0.4883849 0.4869885 

0.001492475; 0.000279887; 0.00039050479; 0.0002803135 
000000.000280313500.0002803135000.00028031350.0002

8031350.0002803135 
100 4.9042; 0.4901; 0.4902; 0.4903 0.000633463; 0.000207306; 0.00020730691; 0.0002073631 

500 4.9559; 0.4955; 0.4955; 0.4955 0.0001249365; 9.466046e-05; 9.466145e-05; 9.468005e-05 

 

5, 2, 0.5, 0.5 

50              4.9766; 1.9582; 0.4903;  0.5295         0.0006979332; 0.0008281978; 0.0002095827; 0.000653262 

100 4.9772; 1.9766; 0.4940; 0.5300 0.0004911315; 0.0004693609; 0.0001221766; 0.000639997 

500 4.9915; 1.9951; 0.4979; 0.5195 0.0001790427; 0.0001014522; 6.853689e-05;  0.000420816 

 

5, 2, 2, 0.5 

50 4.9785; 1.9703; 2.0118; 0.5112 0.0012358932; 0.001557318; 0.0009062982; 0.0003839686 

100 4.9936; 1.9929; 2.0042; 0.5107 0.0006781852; 0.0006859042; 0.0004574815; 0.000259358 

500 4.9978; 1.9989; 2.0042; 0.5052 4.661443e-05; 2.213895e-05; 8.957011e-05; 0.0001106684 

 

5, 2, 2, 2 

50 4.9764; 1.9622; 1.9612; 2.0310 0.0006020727; 0.0007454828; 0.0007543795; 0.000748331 

100             4.9768; 1.9794; 1.9777; 2.0305         0.0004708203; 0.0004017499; 0.0004341177; 0.000669263 

500 4.9907; 1.9946; 1.9929; 2.0180 0.0001871316; 0.0001097178; 0.0001794691; 0.000370626 

 

5, 0.5, 2, 2 

50 4.9299; 0.4867; 1.9391; 1.9396 0.0014381562; 0.0002617809; 0.0012350544; 0.001236148 

100 4.9038; 0.4896; 1.9522; 1.9534 0.000402392; 0.0002070967; 0.0009686258; 0.0009651375 

500 4.9557; 0.4951; 1.9778; 1.9785 0.000134965; 9.531116e-05; 0.0004455848; 0.0004437698 

 

5, 0.5, 0.5, 2 

50 4.9326; 0.4874; 0.4874; 1.9464 0.003378481; 0.0002589772; 0.0002578994; 0.001108993 

100 4.9027; 0.4899; 0.4899; 1.9535 0.002122958; 0.0002133881; 0.0002133881; 0.001015551 

500             4.9537; 0.4952; 0.4952; 1.9779         0.000987379; 9.857832e-05; 9.857825e-05; 0.0004689608 

 

TABLE 4.2. Comparison of MLEs  of parameters of GWP(II) Distribution Based on Monte Carlo Simulation  
 

𝜇,𝛼, 𝛾, 𝜆 n MLEs 

(GWPMMMMMMndbcndmnbcML

EMLEsType equation here. 
  𝑞𝑞𝑞𝑞𝑞Type equation here. 

SD of MLEs  

5, 0.5, 0.5, 0.5 

 

50 5.0419; 0.4829; 0.4830; 0.4829 0.000941907; 0.000377071; 0.000376683; 0.000376864 

100 5.0320; 0.4869; 0.4870; 0.4870 0.000688391; 0.000275845; 0.000275379; 0.000243517 

500 5.0618; 0.4939; 0.4939; 0.4939 0.000133042; 0.000127179; 0.000127168; 0.000127178 

 

5, 2, 0.5, 0.5 

50            5.0323; 1.9810; 0.4928; 0.4869         0.000828137; 0.000543329; 0.000368399; 0.000340591 

100 5.0197; 1.9886; 0.4928; 0.4921 0.0004175504; 0.000290250; 0.00018884; 0.000191740 

500 5.0365; 1.9837; 0.4966; 0.4966 0.000186694; 0.00014888; 7.339843e-05; 7.338202e-05 

 

5, 2, 2, 0.5 

50 5.0283; 1.9869; 2.0037; 0.4886 0.000567146; 0.000261966; 7.347964e-05; 0.00026858 

100 5.0091; 1.9944; 2.0007; 0.4964 0.000188039; 0.000114927; 2.44261e-05; 7.52159e-05 

500 5.0489; 1.9783; 2.0092; 0.4954 0.000053631; 0.000013631; 1.7326e-05; 5.928426e-05 

 

5, 2, 2, 2 

50 5.0131; 1.9934; 1.9766; 1.9750 0.00032259; 0.000162217; 0.000595815; 0.000612326 

100             5.0127; 1.9926; 1.9791; 1.9757           0.000190676; 0.000102971; 0.000316516; 0.000361372 

500 5.0166; 1.9926; 1.9926; 1.9926 0.00005544; 0.000087631; 0.000157595; 0.000157532 

 

5, 0.5, 2, 2 

50 5.0224; 0.4904; 1.9633; 1.9570 0.00048816; 0.000210494; 0.000837212; 0.000931920 

100 5.0169; 0.4928; 1.9731; 1.9676 0.000357676; 0.000148830; 0.000584700; 0.00068110 

500 5.0354; 0.4963; 1.9838; 1.9834 0.00011589; 6.974112e-05; 0.000317487; 0.000318759 

 

5, 0.5, 0.5, 2 

50 5.0474; 0.4809; 0.4814; 1.9709 0.001041872; 0.000416765; 0.00035215; 0.000654382 

100 5.0367; 0.4852; 0.4852; 1.9729 0.000778875; 0.000311278; 0.000311278; 0.00047476 

500             5.0580; 0.4937; 0.4937; 1.9739           0.000126836; 0.000129405; 0.000129405; 0.000261608 
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