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In this paper we stochastically compare two parallel systems each having heterogeneous
exponentiatedWeibull components. These comparisons aremadewith respect to reversed
hazard rate ordering and likelihood ratio ordering. Similar comparisons are also made
for two systems with component lives following multiple outlier exponentiated Weibull
model.

1. Introduction

Order statistics have a remarkable contribution in both theory and practice. It has a prominent role in statistics, applied
probability, reliability theory, operations research, actuarial science, auction theory, hydrology and many other related and
unrelated areas. Parallel and series systems are the building blocks of many complex coherent systems in reliability theory.
If X1:n ≤ X2:n ≤ · · · ≤ Xn:n denote the order statistics corresponding to the random variables X1, X2, . . . , Xn, then the
lifetime of a series system corresponds to the smallest order statistic X1:n and that of a parallel system is represented by
the largest order statistic Xn:n. Although different properties of order statistics from homogeneous populations have been
studied in detail in the literature, not much work is available for order statistics from heterogeneous populations, due to
its complicated nature of expressions. For properties of order statistics for independent and non-identically distributed
random variables, onemay refer to David and Nagaraja (2003). Stochastic comparisons of parallel systems of heterogeneous
components with exponential, gamma, Weibull and generalized exponential (GE) lifetimes have been studied by several
authors. One may refer to Dykstra et al. (1997), Misra and Misra (2013), Zhao and Balakrishnan (2011, 2012), Torrado and
Kochar (2015), Kundu et al. (2016) and the references there in.

The three-parameter exponentiated Weibull (EW) distribution was proposed by Mudholkar and Srivastava (1993) by
exponentiating the two-parameter Weibull distribution and was later analyzed extensively by Mudholkar et al. (1995,
1996) andMudholkar and Hutson (1996). The EW distribution is shown tomodel non-monotone hazard rates, including the
bathtub-shaped hazard rate, and is shown to fit many real life situations well, compared to the conventional exponential,
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gamma or Weibull models. A random variable X is said to have EW (also known as generalized Weibull) distribution with
parameters (α, β, λ), written as EW(α, β, λ), if the distribution function of X is given by

F(x) =


1 − e−(λx)β

α
, x > 0, λ > 0, β > 0, α > 0,

where α and β are the shape parameters and λ is the scale parameter. Recently, Fang and Zhang (2015) have nicely com-
pared two parallel systems of EW components in terms of usual stochastic order, dispersive order and likelihood ratio order.
In this paper our main aim is to compare two parallel systems in terms of reversed hazard rate order and likelihood ratio
order by comparing the parameters λ and α when the components are from two heterogeneous EW distributions as well
as from the multiple outlier EW distributions. These results generalize similar results for GE distribution (taking β = 1),
generalized Rayleigh distribution (taking β = 2), Weibull distribution (taking α = 1) and exponential distribution (taking
β = 1 and α = 1).

The organization of the paper is as follows. In Section 2, we have given the required definitions and some useful lemmas
which have been used throughout the paper. In Section 3, results related to reversed hazard rate ordering between two order
statistics Xn:n and Yn:n are given under weak majorization of the parameters α and λ. We have also shown that there exists
likelihood ratio ordering betweenX2:2 and Y2:2 under certain arrangements of the parameters. For the case ofmultiple-outlier
EWmodel, the likelihood ratio ordering between Xn:n and Yn:n is also established. Finally, Section 4 concludes the paper.

Throughout the paper, the word increasing (resp. decreasing) and nondecreasing (resp. nonincreasing) are used
interchangeably, and ℜ denotes the set of real numbers {x : −∞ < x < ∞}. We also write a

sign
= b to mean that a and b

have the same sign. For any differentiable function k(·), we write k′(t) to denote the first derivative of k(t)with respect to t .
The random variables considered in this paper are all nonnegative. By independence of random variables wemean that they
are statistically independent.

2. Preliminaries

For two absolutely continuous random variables X and Y with distribution functions F (·) and G (·), density functions
f (·) and g (·) and reversed hazard rate functions r (·) and s (·) respectively, X is said to be smaller than Y in (i) likelihood
ratio order (denoted as X ≤lr Y ), if

g(t)
f (t) increases in t , and (ii) reversed hazard rate order (denoted as X ≤rhr Y ), if

G(t)
F(t) increases

in t or equivalently r(t) ≤ s(t) for all t . For more on different stochastic orders, see Shaked and Shanthikumar (2007).
The notion of majorization (Marshall et al., 2011) is essential for the understanding of the stochastic inequalities for

comparing order statistics. Let In be an n-dimensional Euclidean space where I ⊆ ℜ. Further, for any two real vectors
x = (x1, x2, . . . , xn) ∈ In and y = (y1, y2, . . . , yn) ∈ In, write x(1) ≤ x(2) ≤ · · · ≤ x(n) and y(1) ≤ y(2) ≤ · · · ≤ y(n) as the
increasing arrangements of the components of the vectors x and y respectively. The following definitions may be found in
Marshall et al. (2011).

Definition 2.1. (i) The vector x is said to majorize the vector y (written as x
m
≽ y) if

j
i=1

x(i) ≤

j
i=1

y(i), j = 1, 2, . . . , n − 1, and
n

i=1

x(i) =

n
i=1

y(i).

(ii) The vector x is said to weakly supermajorize the vector y (written as x
w
≽ y) if

j
i=1

x(i) ≤

j
i=1

y(i), for j = 1, 2, . . . , n.

(iii) The vector x is said to weakly submajorize the vector y (written as x ≽w y) if
n
i=j

x(i) ≥

n
i=j

y(i), for j = 1, 2, . . . , n.

Definition 2.2. A function ψ : In → ℜ is said to be Schur-convex (resp. Schur-concave) on In if x
m
≽ y implies ψ (x) ≥

(resp. ≤) ψ (y) for all x, y ∈ In. �

We next present two useful lemmas which will be used in the next section to prove our main results.

Lemma 2.1. For x, β > 0, φ(y) = y

eyx

β
− 1

−1
is decreasing in y > 0. �

The following lemma can be found in Marshall et al. (2011, p. 87) where the parenthetical statements are not given.

Lemma 2.2. Let ϕ : In → ℜ. Then

(a1, a2, . . . , an)≽w(b1, b2, . . . , bn) implies ϕ(a1, a2, . . . , an) ≥ (resp. ≤) ϕ(b1, b2, . . . , bn)
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if, and only if, ϕ is increasing (resp. decreasing) and Schur-convex (resp. Schur-concave) on In. Similarly,

(a1, a2, . . . , an)
w
≽ (b1, b2, . . . , bn) implies ϕ(a1, a2, . . . , an) ≥ (resp. ≤) ϕ(b1, b2, . . . , bn)

if, and only if, ϕ is decreasing (resp. increasing) and Schur-convex (resp. Schur-concave) on In.

3. Main results

Notation 3.1. Let us first introduce the following notations which will be used in all the upcoming theorems.
(i) D+ = {(x1, x2, . . . , xn) : x1 ≥ x2 ≥ · · · ≥ xn > 0}.
(ii) E+ = {(x1, x2, . . . , xn) : 0 < x1 ≤ x2 ≤ · · · ≤ xn}.

For i = 1, 2, . . . , n, let Xi ∼ EW (αi, β, λi) and Yi ∼ EW (θi, β, δi) be two sets of n independent random variables. If Fn:n (·)
and Gn:n (·) are the distribution functions of Xn:n and Yn:n respectively, then

Fn:n (x) =

n
i=1


1 − e−(λix)β

αi
,

and

Gn:n (x) =

n
i=1


1 − e−(δix)β

θi
.

Again, if rn:n(·) and sn:n(·) are the reversed hazard rate functions of Xn:n and Yn:n respectively then,

rn:n (x) =

n
i=1

αiβλ
β

i x
β−1

e(λix)β − 1
, (3.1)

sn:n (x) =

n
i=1

θiβδ
β

i x
β−1

e(δix)β − 1
. (3.2)

The following two theorems show that under certain conditions onparameters, there exists reversed hazard rate ordering
between Xn:n and Yn:n. Write α = (α1, α2, . . . , αn), θ = (θ1, θ2, . . . , θn), λ = (λ1, λ2, . . . , λn) and δ = (δ1, δ2, . . . , δn).

Theorem 3.1. For i = 1, 2, . . . , n, let Xi and Yi be two sets of mutually independent random variables with Xi ∼ EW (αi, β, λi)
and Yi ∼ EW (αi, β, δi). Further, suppose that α ∈ E+ and λ, δ ∈ D+. Then, for all β > 0,

λ
w
≽ δ implies Xn:n ≥rhr Yn:n.

Proof. Let gi(y) =
αiyβxβ−1

eyxβ−1
. Differentiating gi(y)with respect to y, we get

g ′

i (y) = αiψ(y),

where, by Lemma 2.4 of Fang and Zhang (2015),

ψ(y) = βxβ−1 e
yxβ

− 1 − yxβeyx
β

eyxβ − 1
2

is increasing in y ≥ 0, for all β ≥ 0. So, for any two real numbers a ≥ b,ψ(a) ≥ ψ(b). Again, from Lemma 2.1 it follows that
ψ(y) < 0 for all y > 0. Now, if α ∈ E+, then −αiψ(a) ≤ −αi+1ψ(b), which implies that g ′

i (a) ≥ g ′

i+1(b). So, by Proposition
H.2 of Marshall et al. (2011), rn:n (x) is Schur convex. Thus, the result follows from Lemmas 2.1 and 2.2. �

The counterexample given below shows that without the ascending order of the components of the scale parameters and
the descending order of the components of the shape parameters Theorem 3.1 may not hold, even if the weak majorization
between λ and δ is replaced by majorization order.

Counterexample 3.1. Let Xi ∼ EW (αi, β, λi) and Yi ∼ EW (αi, β, δi), i = 1, 2, 3. Now, if (λ1, λ2, λ3) = (5, 4, 1) ∈ D+,
(δ1, δ2, δ3) = (4, 4, 2) ∈ D+, (α1, α2, α3) = (2, 50, 100) ∈ E+ and β = 2 are taken, then from Fig. 2.1 it can be

concluded that X3:3 ≥rhr Y3:3, while λ
m
≽ δ. But if we reverse the order of the vectors λ and δ then, for same α and β ,

r3:3(0.8) − s3:3(0.8) = 2.40613 and r3:3(0.5) − s3:3(0.5) = −22.6305 giving X3:3 ≱rhr Y3:3. It is to be mentioned here that
while plotting the curve, the substitution x = − ln y has been used so that r3:3(− ln y)− s3:3(− ln y) = a(y), say.

Theorem 3.1 shows the ordering between Xn:n and Yn:n when λ majorizes δ keeping the other parameters same. Now the
question arises—what will happen if α majorizes θ while the scale parameters λ, and δ are equal? The theorem given below
answers this question.
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Fig. 2.1. Graph of a(y).

Theorem 3.2. For i = 1, 2, . . . , n, let Xi and Yi be two sets of mutually independent random variables with Xi ∼ EW (αi, β, λi)

and Yi ∼ EW (θi, β, λi). If α
m
≽ θ and

(i) α, θ ∈ D+ and λ ∈ E+, then Xn:n ≥rhr Yn:n;
(ii) α, θ,λ ∈ D+, then Xn:n ≤rhr Yn:n.

Proof. Assuming g(xi) = xi, ui =
λ
β
i βx

β−1

e(λix)
β

−1
and

ϕ(α) =

n
i=1

uig(αi),

and by noting the fact that ui ∈ D+ (ui ∈ E+) whenever λi ∈ E+ (λi ∈ D+) (by Lemma 2.1) and using Theorem 3.1 and
Theorem 3.2 of Kundu et al. (2016) it can be proved that rn:n (x) is Schur convex under condition (i), and Schur concave under
condition (ii). This proves the result. �

The following theorem follows from Lemma 2.2 and Theorem 3.2.

Theorem 3.3. For i = 1, 2, . . . , n, let Xi and Yi be two sets of mutually independent random variables with Xi ∼ EW (αi, β, λi)
and Yi ∼ EW (θi, β, λi).
(i) If α, θ ∈ D+ and λ ∈ E+, then α ≽w θ implies Xn:n ≥rhr Yn:n.
(ii) If α, θ,λ ∈ D+, then α

w
≽ θ implies Xn:n ≤rhr Yn:n.

The following theorem shows that, based on the majorization order of the parameters, the ratio of the reversed hazard rate
functions of X2:2 and Y2:2 is monotone.

Theorem 3.4. For i = 1, 2, let Xi and Yi be two sets of mutually independent random variables with Xi ∼ EW (αi, β, λi) and

Yi ∼ EW (αi, β, δi). If α ∈ E+, λ, δ ∈ D+ and λ
m
≽ δ, then, for 0 < β ≤ 1,

r2:2(x)
s2:2(x)

is increasing in x.

Proof. Let u(x) =
xβ

exβ−1
. So,

r2:2(x)
s2:2(x)

=

α1βλ
β
1 x
β−1

e(λ1x)
β

−1
+

α2βλ
β
2 x
β−1

e(λ2x)
β

−1

α1βδ
β
1 xβ−1

e(δ1x)
β

−1
+

α2βδ
β
2 xβ−1

e(δ2x)
β

−1

=
α1u(λ1x)+ α2u(λ2x)
α1u(δ1x)+ α2u(δ2x)

= η(x)(say).

Now, u(x), by Lemma 3.1 of Torrado and Kochar (2015), is decreasing and convex in x ≥ 0, for all 0 < β ≤ 1. Again,
differentiating u(x)with respect to x, we get

u′(x) =
β

x
u(x)v(x),

where

v(x) = 1 −
xβ

1 − e−xβ
.
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By Lemma 3.2 of Torrado and Kochar (2015), v(x) is decreasing in x. Again, differentiating η(x)with respect to x, we get

η′(x)
sign
=

α1λ1u′(λ1x)+ α2λ2u′(λ2x)


(α1u(δ1x)+ α2u(δ2x))

−

α1δ1u′(δ1x)+ α2δ2u′(δ2x)


(α1u(λ1x)+ α2u(λ2x)) .

Thus, it is clear that η(x) is increasing in x ≥ 0 if

Ψ (λ1, λ2) =
α1λ1u′(λ1x)+ α2λ2u′(λ2x)
α1u(λ1x)+ α2u(λ2x)

=
β

x
α1u(λ1x)v(λ1x)+ α2u(λ2x)v(λ2x)

α1u(λ1x)+ α2u(λ2x)

is Schur-convex in (λ1, λ2). Writingw(x) = u(x)v′(x)(≤0), we get

∂Ψ

∂λ1
−
∂Ψ

∂λ2

sign
=

(α1α2 (v(λ1x)− v(λ2x)))


u′(λ1x)u(λ2x)+ u′(λ2x)u(λ1x)


+ ((α1u(λ1x)+ α2u(λ2x))) (α1w(λ1x)− α2w(λ2x))] . (3.3)

Again, by Lemma 3.4 of Torrado and Kochar (2015),

w(x) =

βe2β−1ex
β

xβ + 1 − ex

β



exβ − 1

3
is increasing in x ≥ 0 for all 0 < β ≤ 1.

Now, as λ ∈ D+ and v(x) is decreasing in x, it can be written that v(λ1x) − v(λ2x) ≤ 0 for all λ1 ≥ λ2. Thus, by
noting the fact that u(x) is decreasing in x, it can be shown that the first term of (3.3) is nonnegative. Again, for α ∈ E+,
α1w(λ1x) ≥ α2w(λ2x). Hence, for all x ≥ 0, the second term of (3.3) is also nonnegative. Thus, by Lemma 3.1 of Kundu et al.

(2016), Ψ is Schur convex in λ. Thus, λ
m
≽ δ gives η′(x) ≥ 0, proving the result. �

Kundu et al. (2016) have shown that, for generalized exponential distribution, although there does not exist lr ordering
between X3:3 and Y3:3 when δ is majorized by λ, the result is true for n = 2. Corollary 3.1 shows that the same can be
concluded for EW distribution.

Corollary 3.1. For i = 1, 2, let Xi and Yi be two sets of mutually independent random variables with Xi ∼ EW (αi, β, λi) and
Yi ∼ EW (αi, β, δi). If α ∈ E+, λ, δ ∈ D+ and 0 < β ≤ 1, then

λ
m
≽ δ implies X2:2 ≥lr Y2:2.

Proof. If f2:2 (·) and g2:2 (·) denote the density functions of X2:2 and Y2:2 respectively, then

f2:2 (x)
g2:2 (x)

=
F2:2 (x)
G2:2 (x)

.
r2:2(x)
s2:2(x)

is increasing in x.

This is because the first ratio is increasing in x by Theorem 3.1 and the second ratio is increasing in x by Theorem 3.4. �

The next theorem shows that, if α majorizes θ and λ is kept fixed, then depending upon certain conditions on α, θ and λ,
r2:2(x)
s2:2(x)

will be monotone.

Theorem 3.5. For i = 1, 2, . . . , n, let Xi and Yi be two sets of mutually independent random variables with Xi ∼ EW (αi, β, λi)

and Yi ∼ EW (θi, β, λi). Further, suppose that α
m
≽ θ. Then

(i) r2:2(x)
s2:2(x)

is increasing in x if α, θ ∈ D+ and λ ∈ E+.

(ii) r2:2(x)
s2:2(x)

is decreasing in x if α, θ,λ ∈ D+.

Proof. Following Theorem 3.4, we have

r2:2(x)
s2:2(x)

=
α1u(λ1x)+ α2u(λ2x)
θ1u(λ1x)+ θ2u(λ2x)

= η1(x)(say),

where u(x) is as defined in Theorem 3.4. Differentiating η1(x)with respect to x, we get

η′

1(x)
sign
=

α1λ1u′(λ1x)+ α2λ2u′(λ2x)


(θ1u(λ1x)+ θ2u(λ2x))

−

θ1λ1u′(λ1x)+ θ2λ2u′(λ2x)


(α1u(λ1x)+ α2u(λ2x)) .
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Fig. 2.2. Graph of b(y).

To prove that η′

1(x) ≥ (≤) 0 in x, we have to show that

Ψ (α1, α2) =
β

x
α1u(λ1x)v(λ1x)+ α2u(λ2x)v(λ2x)

α1u(λ1x)+ α2u(λ2x)

is Schur-convex (Schur-concave) in (α1, α2)with v(x) as defined earlier. Now,

∂Ψ

∂α1
−
∂Ψ

∂α2

sign
= (α1 + α2) (v(λ1x)− v(λ2x)) u(λ1x)u(λ2x).

Thus, if λ ∈ E+ then ∂Ψ
∂α1

−
∂Ψ
∂λ2

≥ 0. Now, using Lemma 3.1 of Kundu et al. (2016) and noting the fact that α ∈ D+, it can be
proved that Ψ is Schur-convex in α. Again, if λ ∈ D+ we see that ∂Ψ

∂α1
−

∂Ψ
∂λ2

≤ 0. So, if α ∈ D+ then by Lemma 3.1 of Kundu

et al. (2016) it can be concluded that Ψ is Schur-concave in α. So, if α, θ ∈ D+ and λ ∈ E+, then
r2:2(x)
s2:2(x)

is increasing in x and

if α, θ,λ ∈ D+, then
r2:2(x)
s2:2(x)

is decreasing in x. �

The following counterexample shows that Theorem 3.5 does not hold for n ≥ 3.

Counterexample 3.2. Let Xi ∼ EW (αi, β, λi) and Yi ∼ EW (θi, β, λi), i = 1, 2, 3, where (λ1, λ2, λ3) = (500, 0.01, 0.001)

∈ D+, (α1, α2, α3) = (1, 5, 6) ∈ E+, (θ1, θ2, θ3) = (2, 5, 5) ∈ E+ and β = 0.4. Clearly, (α1, α2, α3)
m
≽ (θ1, θ2, θ3). By

substituting x = − ln y, we see from Fig. 2.2 that r3:3(x)
s3:3(x)

= b(y) is not monotone.

Corollary 3.2. For i = 1, 2, let Xi and Yi be two sets of mutually independent random variables with Xi ∼ EW (αi, β, λi) and

Yi ∼ EW (θi, β, λi). Further, suppose that α
m
≽ θ. Then

(i) X2:2 ≥lr Y2:2 if α, θ ∈ D+ and λ ∈ E+.
(ii) X2:2 ≤lr Y2:2 if α, θ,λ ∈ D+.

Proof. Using Theorems 3.2 and 3.5 and following similar argument as in the proof of Corollary 3.1, the results follow. �

Although Theorem 3.4 does not hold for n ≥ 3, the following theorem shows that in case of multiple-outlier model the
result is true for any positive integer n.

Theorem 3.6. For i = 1, 2, . . . , n, let Xi and Yi be two sets of mutually independent random variables each following the
multiple-outlier EW model such that Xi ∼ EW (α, β, λ) and Yi ∼ EW (α, β, δ) for i = 1, 2, . . . , n1, Xi ∼ EW (α∗, β, λ∗)
and Yi ∼ EW (α∗, β, δ∗) for i = n1 + 1, n1 + 2, . . . , n1 + n2(=n). For 0 < β ≤ 1, if

(λ, λ, . . . , λ,  
n1

λ∗, λ∗, . . . , λ∗  
n2

)
m
≽ (δ, δ, . . . , δ,  

n1

δ∗, δ∗, . . . , δ∗  
n2

)

and α ≤ α∗, λ ≥ λ∗, δ ≥ δ∗, then Xn:n ≥lr Yn:n .

Proof. Using (3.1) and (3.2) we get,

rn:n(x)
sn:n(x)

=

n
i=1

αiβλ
β
i x
β−1

e(λix)
β

−1

n
i=1

αiβδ
β
i xβ−1

e(δix)
β

−1

=

n
i=1
αiu(λix)

n
i=1
αiu(δix)

= η2(x)(say),
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where λi = λ, δi = δ, αi = α for i = 1, 2, . . . , n1 and λi = λ∗, δi = δ∗, αi = α∗ for i = n1 + 1, n1 + 2, . . . , n1 + n2 = n and
u(x) is as defined earlier. So, in view of Theorem 3.1 we need only to prove that η2(x) is increasing in x. Note that

η′

2(x)
sign
=


n

i=1

αiλiu′(λix)


n

i=1

αiu(δix)


−


n

i=1

αiδiu′(δix)


n

i=1

αiu(λix)


.

Thus, η2(x) is increasing in x, if

Ψ (λ, x) =

n
i=1
αiλiu′(λix)

n
i=1
αiu(λix)

=
β

x

n
i=1
αiu(λix)v(λix)

n
i=1
αiu(λix)

is Schur-convex in λ, where v(x) is as defined earlier. Further,

∂Ψ

∂λi
= αi


w(λix)


n1αu(λx)+ n2α

∗u(λ∗x)

+ n1αu(λx)u′(λix) (v(λix)− v(λx))

+ n2α
∗u(λ∗x)u′(λix)


v(λix)− v(λ∗x)


·

β

x


n
i=1
αiu(λix)

2 ,

wherew(x) is as defined in Theorem 3.4.
Now, three cases may arise:
Case (i) 1 ≤ i < j ≤ n1. Here αi = αj = α and λi = λj = λ, so that

∂Ψ

∂λi
= α


w(λx)


n1αu(λx)+ n2α

∗u(λ∗x)

+ n2α

∗u(λ∗x)u′(λx)

v(λx)− v(λ∗x)


·

β

x


n
i=1
αiu(λix)

2

=
∂Ψ

∂λj
,

giving ∂Ψ
∂λi

−
∂Ψ
∂λj

= 0.
Case (ii) If n1 + 1 ≤ i < j ≤ n, i.e. if αi = αj = α∗ and λi = λj = λ∗, then

∂Ψ

∂λi
= α∗


w(λ∗x)


n1αu(λx)+ n2α

∗u(λ∗x)

+ n1αu(λx)u′(λ∗x)


v(λ∗x)− v(λx)


·

β

x


n
i=1
αiu(λix)

2

=
∂Ψ

∂λj
,

giving ∂Ψ
∂λi

−
∂Ψ
∂λj

= 0.
Case (iii) If 1 ≤ i ≤ n1 and n1 + 1 ≤ j ≤ n, then αi = α, λi = λ and αj = α∗, λj = λ∗. So,

∂Ψ

∂λi
−
∂Ψ

∂λj
=

n1αu(λx)+ n2α

∗u(λ∗x)
 
αw(λx)− α∗w(λ∗x)


+

v(λx)− v(λ∗x)

 
n1αu(λx)u′(λ∗x)+ n2α

∗u(λ∗x)u′(λx)

·

β

x


n
i=1
αiu(λix)

2 .

Now, if λ ≥ λ∗ and α ≤ α∗, we have, for all x ≥ 0,

αw(λx)− α∗w(λ∗x) ≥ 0.

Again, as v(x) and u(x) are decreasing in x, we have ∂Ψ
∂λi

−
∂Ψ
∂λj

≥ 0 for all x. Hence, by Lemma 3.1 of Kundu et al. (2016), Ψ is
Schur-convex.

Theorem 3.7. For i = 1, 2, . . . , n, let Xi and Yi be two sets of independent random variables each following the multiple-outlier
EW model such that Xi ∼ EW (α, β, λ) and Yi ∼ EW (θ, β, λ) for i = 1, 2, . . . , n1, Xi ∼ EW (α∗, β, λ∗) and Yi ∼ EW
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(θ∗, β, λ∗) for i = n1 + 1, n1 + 2, . . . , n1 + n2(=n). If

(α, α, . . . , α,  
n1

α∗, α∗, . . . , α∗  
n2

)
m
≽ (θ, θ, . . . , θ,  

n1

θ∗, θ∗, . . . , θ∗  
n2

),

and

(i) α ≤ α∗, θ ≤ θ∗, λ ≥ λ∗, then Xn:n ≥lr Yn:n;
(ii) α ≤ α∗, θ ≤ θ∗, λ ≤ λ∗, then Xn:n ≤lr Yn:n.

Proof. In view of Theorem 3.2 it is sufficient to prove that rn:n(x)
sn:n(x)

is increasing in x under condition (i) and rn:n(x)
sn:n(x)

is decreasing
in x under condition (ii). Using similar argument as before it can be shown that

rn:n(x)
sn:n(x)

=

n
i=1
αiu(λix)

n
i=1
θiu(λix)

= η3(x)(say),

with λi = λ, θi = θ for i = 1, 2, . . . , n1 and αi = α∗, λi = λ∗, θi = θ∗ for i = n1 + 1, n1 + 2, . . . , n1 + n2 = n. Now,

η′

3(x)
sign
=


n

i=1

αiλiu′(λix)


n

i=1

θiu(λix)


−


n

i=1

θiλiu′(λix)


n

i=1

αiu(λix)


.

So, η3(x) is increasing (decreasing) in x if

Ψ (α, x) =

n
i=1
αiλiu′(λix)

n
i=1
αiu(λix)

=
β

x

n
i=1
αiu(λix)v(λix)

n
i=1
αiu(λix)

is Schur-convex (Schur-concave) in α. Now,

∂Ψ

∂αi
= n1αu(λx)u(λix) (v(λix)− v(λx))+ n2α

∗u(λ∗x)u(λix)

v(λix)− v(λ∗x)


·

β

x


n
i=1
αiu(λix)

2 .

Here also, as before, three cases may arise:
Case (i) 1 ≤ i < j ≤ n1. Now,

∂Ψ

∂αi
= n2α

∗u(λ∗x)u(λx)

v(λx)− v(λ∗x)


·

β

x


n
i=1
αiu(λix)

2

=
∂Ψ

∂αj
,

implying ∂Ψ
∂αi

−
∂Ψ
∂αj

= 0.
Case (ii) n1 + 1 ≤ i < j ≤ n. Here,

∂Ψ

∂αi
= n1αu(λx)u′(λ∗x)


v(λ∗x)− v(λx)


·

β

x


n
i=1
αiu(λix)

2

=
∂Ψ

∂αj
,

giving that ∂Ψ
∂αi

−
∂Ψ
∂αj

= 0.
Case (iii) 1 ≤ i ≤ n1 and n1 + 1 ≤ j ≤ n. Then,

∂Ψ

∂αi
−
∂Ψ

∂αj
= (n1α + n2α∗)u(λx)u(λ∗x)


v(λx)− v(λ∗x)


·

β

x


n
i=1
αiu(λix)

2 .
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Now, if λ ≥ λ∗ then (v(λx)− v(λ∗x)) ≤ 0, which gives that

∂Ψ

∂αi
−
∂Ψ

∂αj
≤ 0.

So, if α ≤ α∗, then by Lemma 3.3 of Kundu et al. (2016), Ψ is Schur-convex.
On the other hand, if λ ≤ λ∗ then (v(λx)− v(λ∗x)) ≥ 0 which implies that

∂Ψ

∂αi
−
∂Ψ

∂αj
≥ 0.

Hence, if α ≤ α∗, then by Lemma 3.3 of Kundu et al. (2016), Ψ is Schur-concave. �

4. Concluding remarks

In this paper, we compare the reversed hazard rate functions of the largest order statistic arising from independent
heterogeneous EWdistributionswhen the scale parameters or the shapeparameters aremajorized. It is also shown that if the
vectors of scale or shape parameters of the underlying distributions are inmajorization order, then likelihood ratio ordering
exists between the largest order statistic of both the two-component systems. Further, we prove that, in themultiple-outlier
EWmodel, if one set of scale parameters (shape parameters) majorizes another, a parallel system formed by the former will
dominate that formed by the latter in the likelihood ratio order. All the results of this paper related to EW random variables
improve similar results related to GE,Weibull, generalized Rayleigh and exponential random variables. It is not very difficult
to show that the results proved for the set of parameters α ∈ E+ and λ, δ ∈ D+ will also be true for the set α ∈ D+ and
λ, δ ∈ E+. Further, the results which hold for the set α,λ ∈ D+ and δ ∈ E+ will also hold for α,λ ∈ E+ and δ ∈ D+.
Similarly, the results which hold for α,λ, δ ∈ D+ will also hold for α,λ, δ ∈ E+.
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