
Introduction

Econophysics as a field of research is now 18 years old, if 
we count the Aug 1995 ‘Dynamics of Complex Systems’ 
conference in Kolkata, India as the official start of the field 
(Stanley et al., 1996). Following this conference, the 
inaugural econophysics conference was held in 1998 in 
Budapest, Hungary. In 2005, the first Econophysics 
Colloquium was held in Canberra, Australia, while the first 
Econophys-Kolkata meeting was held in Kolkata, India. 
Both have since grown into annual events, with the latest 
edition of the former held in Pohang, Korea, 29–31 July 
2013, and the latest edition of the latter held in Kolkata, 
India 8–12 November 2012. With the growing interest  
in econophysics in Asia, the International Conference  
on Econophysics and the Asia-Pacific Econophysics 
Conference were also launched in June 2011 and September 
2012 respectively. In 2014, we will see at least three econo-
physics meetings in Asia: Econophys-Kolkata in March, 
the International Conference on Econophysics in June, and 
the Econophysics Colloquium in November. Besides the 
proliferation of conferences, we can judge from the number 
of econophysics papers published every year that the  
field has matured. Looking especially at the recent papers 
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(Moat et al., 2013; Preis, Moat, & Stanley, 2013), it is also 
clear that many exciting research themes have emerged, 
waiting for the econophysics community to explore in 
detail.

In an opinion paper published in 2006, Gallegati  
et al. expressed worries about the state of econophysics 
at that time (Gallegati, Keen, Lux, & Omerod, 2006). 
Econophysicists were not paying enough attention to the 
economics literature, not sufficiently rigorous in their sta-
tistical analysis, overselling the notion of universality in 
human activities and organizations, and overconfident in 
statistical physics models based on energy conservation.  
In the years following, this situation has certainly changed. 
Even though econophysicists are still not publishing in  
the most prestigious economics journals, they are slowly 
penetrating finance journals (Bouchaud, Gefen, Potters, & 
Wyart, 2004). More importantly, there are increasing col-
laborations between economists and econophysicists, who 
are traditionally from nuclear physics, nonlinear physics, 
and statistical physics. This is a very encouraging trend.

Clearly, financial markets and economies are complex. 
More mathematical sophistication, not less, is needed to 
understand them. Nonlinear approaches, in addition to lin-
ear approaches, will be needed. After the Global Financial 
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Crisis of 2007–2009, part of the economics community 
realized these urgent needs, and called for more efforts 
devoted into developing the field of complexity economics 
(Arthur, 1999; Durlauf, 2005; Gallegati & Kirman, 2012). 
The Institute for New Economic Thinking (INET), created 
in late 2009 by a US$50 million seed funding by business 
magnate and philanthropist George Soros, now stands as 
the beacon for this movement within economics. However, 
there are also many economists, including very influential 
ones, who are reluctant to move on from equilibrium ideas 
about the economy. Financial institutions and regulators 
will obviously not wait for this academic debate to con-
clude. They need answers, and they need them now, how-
ever imperfect they may be, so long as they are more 
relevant to the problems they wrestle with day in day out.

This presents a fantastic opportunity to the econophysics 
community. Continuing the trend before the Subprime 
Crisis (The Economist, 2007), US undergraduates continue 
to pursue a major in economics (The Brown Daily Herald, 
2013; University of Wisconsin-Madison, 2013). Although 
no systematic study has been done in Europe and Asia, we 
believe that interest in economics and finance is also 
growing. This is to be expected, when news media devote 
so much space to talking about the global financial crisis. 
At the bachelor’s level, we are also inclined to believe an 
economics major training will not adequately prepare 
graduates to cope with economics and finance problems in 
the real world. Most of these graduates simply do not have 
the requisite mathematical sophistication. Econophysics 
graduates, on the other hand, trained in the mathematical 
methods of classical and quantum particles and fields, and 
also receive dedicated instruction to bridge the cultural 
divide between physical and social sciences, may be much 
better placed for growing employment opportunities in 
banks as well as government.

With these considerations at the back of our mind, we 
started an econophysics advanced undergraduate course, 
PH4410 Econophysics, in the Physics and Applied  
Physics degree programmes in the Nanyang Technological 
University, Singapore. In the spirit of encouraging under- 
graduates to take on a more interdisciplinary view of the 
real world, this course is also open to students from the 
Business Management (Banking and Finance), Computer 
Science, Economics, Mathematical Sciences, and Mathe- 
matics and Economics degree programmes, offered by the 
Nanyang Business School, the School of Computer Engi- 
neering, the School of Humanities and Social Sciences, 
and the School of Physical and Mathematical Sciences. 
With this course as the core, we also aim to build up an 
econophysics concentration consisting of two Physics and 

Applied Physics courses, and one course each from the 
Nanyang Business School (Banking and Finance) and the 
School of Humanities and Social Sciences (Economics). 
Eventually, when we are certain the demand is there, and 
the graduates are well received in the job market, we will 
propose an Econophysics degree programme, with an 
enrolment of 50 to 100 students every year.

In the sections to follow, we will give a brief introduc-
tion to the history of the Nanyang Technological University, 
its current academic makeup, and a brief description of its 
teaching and research. We will then describe the design of 
the econophysics course, giving an outline of the topics 
covered, its experimental participatory course structure, 
the learning objectives and how students are assessed. 
Finally, we will present outcomes from running this course 
the very first time, how we plan to fine tune it the second 
time round, before we conclude.

The Nanyang Technological University

The Nanyang Technological University (NTU) occupies a 
200-hectare main campus in the west of Singapore. It is 
one of the four publicly funded universities in Singapore, 
the other three being the National University of Singapore, 
the Singapore Management University, and the Singapore 
University of Technology and Design (in collabora- 
tion with the Massachusetts Institute of Technology and 
Zhejiang University). The university started out as Nanyang 
University in 1955 with donations of money and land from 
Singaporean Chinese philanthropists. In this original incar-
nation, all courses were taught in Chinese. In 1980,  
the Singapore government ordered it to be merged with  
the Singapore University to form the National University of 
Singapore, because of the increasing difficulty for Chinese-
educated university graduates to find employment.

At the same time, Singapore was rapidly growing its 
manufacturing industry, and needed a large number of 
engineers. The large engineering cohort received founda-
tional instructions in the National University of Singapore 
for the first year, and in their second year, part of this  
cohort remained in the Faculty of Engineering in the 
National University of Singapore, while the rest continued 
their engineering education in the campus of the former 
Nanyang University, now renamed the Nanyang Tech- 
nological Institute. Later, recognizing that a purely engi-
neering campus with mostly young men posed a social 
problem that would be difficult to solve later on, Accounting 
and Business Management with mostly young women 
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undergraduates were moved from the National University 
of Singapore to the Nanyang Technological Institute in 
1987. Then in 1991, the National Institute of Education 
merged with the Nanyang Technological Institute to form 
NTU. In the same year, the Wee Kim Wee School of 
Communications and Information was also created.

In 2002, the International Academic Advisory Panel 
commissioned by the Singapore Ministry of Education 
reviewed the higher education scene in Singapore, and 
among other things recommended to make NTU a compre-
hensive university. This led to the creation of a new School 
of Biological Sciences, a new School of Art, Design  
and Media, a new school of Physical and Mathematical  
Sciences, a new School of Humanities and Social Sciences, 
and the S. Rajaratnam School of International Studies. 
Starting last year, our university also became home to the 
Lee Kong Chian School of Medicine, which is a joint  
venture between NTU and Imperial College. At present, the 
various schools are organized into the College of Business, 
the College of Engineering, the College of Humanities,  
Arts and Social Sciences, the College of Science, National 
Institute of Education, S. Rajaratnam School of International 
Studies, and the Lee Kong Chian School of Medicine.

NTU started out with highly disciplinary research. 
However, research funding in Singapore is primarily driven 
by problems rather than scientific disciplines. As such, 
research in our university has evolved to become more 
interdisciplinary in nature. In particular, for energy and 
water research, it has organized its experts into the Energy 
Research Institute at Nanyang (ERI@N) and the Nanyang 
Environment and Water Research Institute (NEWRI), both 
of which are funded by the university and competitive 
research grants from various agencies. The university also 
hosts two highly interdisciplinary National Research 
Foundation (NRF) Research Centres of Excellence, the 
Earth Observatory of Singapore and the Singapore Centre 
of Environmental Life Science and Engineering. The uni-
versity has also recently started a Complexity Programme 
modelled after the Santa Fe Institute, drawing experts from 
the various schools to look into interdisciplinary problems 
related to natural and man-made complex systems. On a 
whole, the university has risen steadily in terms of world 
ranking. As of 2012, it is ranked 86 in the Times Higher 
Education (THE) world university ranking, and 47 in the 
Quacquarelli Symonds (QS) world university ranking. It is 
one of the 10 fastest growing universities in the world.

The Nanyang Technological University offers 54 under-
graduate degree programmes and 58 masters programmes, 
in addition to the PhD degree by research in the 

Interdisciplinary Graduate School as well as all schools 
and institutes. It has 23,500 undergraduate students, 10,000 
graduate students, and 4,200 faculty and staff. Teaching 
remained highly disciplinary until recently, when the uni-
versity started responding quickly to recent developments 
in industry, and regularly offers new degree programmes as 
well as updates to existing programmes at both the under-
graduate and graduate levels. Over the last few years, vari-
ous double degree and double major programmes such as 
Business and Computing, Mathematics and Economics, 
Biology and Psychology have seen strong interests from 
applicants. Besides encouraging schools to abolish tradi-
tional boundaries and mount joint courses and minors  
that will help our graduates develop an interdisciplinary 
edge in their approach to real-world problems, the univer-
sity also has three elite programmes that are by design 
interdisciplinary. These are the C N Yang Scholars Program, 
the Renaissance Engineering Program, and the University 
Scholars Program. Within such a research and teaching 
environment, the development of the econophysics course, 
concentration, as well as degree programme is favoured at 
the highest level of the university administration.

PH4410 Econophysics Course 
Organization

As the course code suggests, my econophysics course is 
targeted at fourth-year advanced Physics and Applied 
Physics undergraduates, taught over a 13-week semester. 
The pre-requisites for this course are PH3201 Statistical 
Mechanics I and PH3502 Chaotic Dynamical Systems. 
These pre-requisites are more suggestive than restrictive, 
and they can be waived for Physics and Applied  
Physics students eager to take PH4410 Econophysics. For 
Computer Science, Business Management (Banking and 
Finance), Economics, Mathematical Sciences, Mathematics 
and Economics students wanting to take the course, these 
pre-requisites can similarly be waived provided they are 
judged to have adequate mathematical and statistical 
background.

Course Outline

The course is organized into three parts: (a) high-frequency 
financial time series (4 weeks); (b) high-frequency finan-
cial time series cross section (5 weeks); and (c) agent-based 
models of markets and economies (4 weeks). There is a 
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two-hour lecture every week, and another contact hour 
every week that is used every other week for tutorials, and 
the rest of the time for lectures. For this first offering of the 
course, I adopted an experimental course structure, based 
on the concept of an open textbook.

I have tentatively planned for the open textbook to have 
seven chapters, in line with the three parts of the course. 
These chapters are as follows:

1.	 History of Econophysics
2.	 Preliminaries on Probability and Statistics
3.	 Properties of High-frequency Financial Time Series
4.	 Memory in Financial Markets
5.	 Financial Time Series Cross Section and Random 

Matrix Theory
6.	 Cross Correlation Filtering and Time Series Clustering
7.	 Agent-based Models of Financial Markets

In Chapter 1, ‘History of Econophysics’, I aim to 
provide the historical background to the birth of 
econophysics, starting from the beginnings of classical 
physics and classical economics. I explained how the 
mathematization of classical mechanics started in 1687 
with Sir Isaac Newton’s formulation of the laws of motion 
and the development of calculus, was brought to fruition 
by Lagrange and Laplace in the form of analytical 
mechanics. With this, a complete mathematical description 
of the dynamics of point particles was in place, and 
physicists went on to obtain the mathematical description 
of classical fields before quantum physics was discovered. 
Classical economics started later with Adam Smith in 
1776, it became an independent discipline through the 
works of Thomas Malthus and John Stuart Mill, among 
others, and started its mathematization programme in  
1874 with Leon Walras, in a development that parallels 
physics. However, the mathematical trajectories of the two 
disciplines soon parted ways. While physics continued 
using more and more sophisticated mathematical languages 
and methods to describe quantum indeterminism and chaos 
in nonlinear systems, economics continued working with 
linear mathematics and equilibrium.

These two disciplines remained apart for several decades, 
before stock exchanges began computerizing their opera-
tions. This gave rise not only to faster trades (and hence a 
quicker redistribution of wealth), but also to huge volumes 
of transaction data. Physicists like Eugene H. Stanley and 
his collaborators then started looking at these data, drew 
quantitative conclusions about the character of stock  
market returns, and ushered in the era of econophysics.  
In this sense, physics and economics both grew out of  

their philosophical roots when the small amount of data 
that became available drove the mathematization of the 
two disciplines, to build quantitative theories capable of 
explaining such data. The birth of econophysics, on the 
other hand, was driven first by the sudden availability of 
large amounts of data, and then later by the availability  
of computing resources. The large data volume pointed to 
inadequacies behind the standard random walk paradigm, 
whereas computing power led to the development of 
exploratory agent-based models and simulations.

In the second chapter, I very quickly reviewed the pre-
liminaries on probability and statistics that are needed to 
appreciate developments in econophysics. Formally going 
through these mathematical preliminaries is important, 
because the probability and statistics preparations of differ-
ent degree programmes can vary a lot. I started out intro-
ducing the concept of a random variable, the notion of a 
probability distribution, and gave examples of common 
discrete and continuous distribution functions before going 
on to explain how expectation values are computed. I also 
reviewed the concepts behind parameter estimation, using 
linear regression as an example, before reminding students 
what hypothesis testing is all about. Finally, I talked  
about the relation behind information and entropy, and  
how to bring in concepts from equilibrium statistical 
mechanics.

The third and fourth chapters are on individual finan- 
cial time series, and I started off talking about Louis 
Bachelier’s PhD thesis based on the assumption that stock 
returns are generated by a Brownian process, and how  
this assumption lead to the testable hypothesis that stock 
returns should follow a Gaussian distribution. I then 
explained to students that this is indeed observed for 
returns computed on time horizons much longer than a  
day, but show serious discrepancies at shorter time hori-
zons. In particular, returns of real stocks have fat tails that 
fall off asymptotically as power laws. I illustrated this 
using the daily stock prices of Apple Inc downloaded from 
Yahoo! Finance. This illustration is made into a series of 
three YouTube videos (http://www.youtube.com/watch?
v=cRPYF0E47hc, http://www.youtube.com/watch?v=b-P8
NSzhCUc, and http://www.youtube.com/watch?v=QdHX
hg3RC_M).

In the fourth chapter, I talked about the other assump-
tion behind the Brownian process model, that is, returns at 
different time lags should be uncorrelated. In actual fact, 
they show qualitatively different autocorrelation at differ-
ent time lags. I defined the autocorrelation, and described 
the general finding that returns have strongly negatively 
autocorrelations at the time scale of minutes, and weak  

http://ksm.sagepub.com/


Experimental Course for Advanced Undergraduates	 83

 IIM Kozhikode Society & Management Review, 2, 2 (2013): 79–99

positive autocorrelation at the time scale of days and  
weeks (Cont, 2001; Lewellen, 2002). Such autocorrelation 
manifests itself as momentum or mean reversion in the 
financial market. I also talked about the Hurst exponent, 
another measure of long-range autocorrelation, or memory 
in the market (Alvarez-Ramirez, Alvarez, Rodriguez, & 
Fernandez-Anaya, 2008; Cajueiro & Tabak, 2004; Carbone, 
Castelli, & Stanley, 2004; Di Matteo, Aste, & Dacorogna, 
2003, 2005; Eom, Choi, Oh, Jung, 2008; Feigenbaum & 
Freund, 1996; Grech & Pamula, 2008; Lux, 1996; Peters, 
1989; Matos, Gama, Ruskin, Sharkasi, & Crane, 2008). 
Finally, I talked about nonstationarity in financial time 
series, and how segmentation methods can be useful in 
understanding the distribution and meaning of this non-
stationarity (Cheong et al., 2012; Tóth, Lillo, & Farmer, 
2010; Vaglica, Lillo, Moro, & Mantegna, 2008; Wong, 
Lian, & Cheong, 2009; Zhang et al., 2011).

The fifth and sixth chapters of the planned open text-
book are on financial time series cross section. In the fifth 
chapter, I introduce various cross correlation measures 
between time series, before moving on to the Random 
Matrix Theory (RMT), as a means for discriminating 
between pure noise and real signal in the time series cross 
section (Laloux, Cizeau, Bouchaud, & Potters, 1999; 
Plerou, 2002). In the sixth chapter, we follow up by talking 
about correlation filtering, from naïve threshold filtering 
(Kim & Jeong, 2005), to RMT filtering (Laloux, Cizeau, 
Potters, & Bouchaud, 2000), to filtering through the use of 
a minimal spanning tree (MST) (Mantegna, 1999) or a  
planar maximally filtered graph (PMFG) (Tumminello, 
Aste, Di Matteo, & Mantegna, 2005). I then introduced the 
concept of time series clustering (Liao, 2005), to discover 
the number of independent collective variables that can be 
used to simplify the description of the financial market. 
Various clustering methods were introduced.

Finally, in the last and seventh chapter, I talked about 
agent-based models of financial markets. We started first 
on the history of agent-based models, from both the econo-
mists’ and physicists’ perspective. Economists’ agent-
based models tend to be top-down, and involve many 
assumptions on the behaviour of agents. Although these 
look more realistic, their simulation results are also hard to 
analyze. Here I used the Santa Fe artificial market model 
(Palmer, Arthur, Holland, LeBaron, & Tayler, 1994) as the 
main example. In contrast, physicists’ agent-based models 
tend to be bottom-up, that is, toy models. As a specific 
example, I talked about the Ising model, how to simulate  
it, and how its critical behaviour mirrors the tendency of 
markets to crash.

Course Structure

In this course, students are assessed based on four grading 
components. In the first grading component, students 
attend lectures, and are also divided into groups of three to 
five to read up the primary literature (original research arti-
cles, reviews, monographs) and help me develop chapters 
in the open textbook. I explained to students at the start of 
the course that they are all authors of the open textbook, 
and as instructor I merely play the role of an editor. I also 
explained to them that by reading the primary literature 
and summarizing it into a pedagogical form, they would 
truly learn the knowledge and wisdom contained in the 
econophysics literature. Since this would still be very chal-
lenging, I explained to the students that my lectures serve 
as road maps on what to read, and what level of details to 
read down to. I also dedicated one tutorial hour to explain 
how they can search for papers and reviews using Google 
Scholar and Web of Science using different combinations 
of key words. I told my students to limit their searches to 
highly cited papers. This will introduce biases, but I 
explained that we would fix these biases next year when 
the course runs again, because the students will have to do 
this again. Finally, I explained to them how they could syn-
thesize different readings to produce coherent summaries.

In the second grading component, students develop  
end-of-chapter exercises and their solutions. I explained to 
them that they should develop a few of each category of 
questions. The categories are: (a) conceptual, (b) methodo-
logical, and (c) applications to real data. Again, this is a 
hard task for undergraduates, even if they work in groups. 
Therefore, I devoted one tutorial hour to go through a  
sample exercise shown in Appendix 1. Further, since these 
end-of-the-chapter exercises are not examination ques-
tions, each exercise can be self-contained, and not have too 
many parts.

In the third grading component, students develop 
MATLAB programmes that illustrate some of the methods 
discussed in class. Each group is only required to develop 
one MATLAB programme over the whole semester, per-
taining to the open textbook chapter they are working on. 
Again, I devoted one tutorial hour to talk about this. The 
example used is shown in Appendix 2.

The final grading component is the final examination. 
This is a closed book examination, and students are told 
that there will be one question from each major part of the 
course, and a fourth question integrating more probability 
and statistics calculations. The examination is shown in 
Appendix 3.
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As its structure suggests, this course emphasizes partici-
patory learning by the student, in that they are primarily 
responsible for shaping the materials (textbook, problems, 
MATLAB demos) used in the course, with some guidance 
from me (in the form of roadmap lectures, and dedicated 
workshop-like tutorials). This is not the first time I have 
used such a student-driven course structure: I have made 
students develop lecture notes and exercises and MATLAB 
demos in the two times that I had taught a computational 
physics course previously. However, this is the most ambi-
tious implementation of student-led learning that I have 
attempted, to eventually come up with an open source  
textbook on econophysics.

Outcomes

A total of nine students registered for PH4410 Econo-physics. 
Seven were fourth-year Physics and Applied Physics majors, 
one was third-year Physics and Applied Physics major, while 
the last student was a third-year Economics student on study 
exchange in NTU. Because of the small class, the students 
were organized into two groups for their participatory 
activities.

Open Textbook

In my original vision for the course, after students submit-
ted their first drafts of the chapters in the middle of the 
semester, the open textbook would go live on a WordPress 
or equivalent platform. However, this goal proved to be 
unrealistic, as the students needed more than half a semes-
ter just to get their readings done. Moreover, the students 
chose to develop Chapters 6 and 7, and hence it would look 
weird launching an open textbook with the first five chap-
ters missing. In the end, the students went through only one 
revision of the chapters. When this course runs again next 
year, I will load these two chapters onto a private website 
for the next batch of students, and get them to develop the 
remaining chapters. Should the progress be good, I will 
launch the open textbook. Otherwise, I will have one more 
batch of students work on the open textbook before it is 
made publicly available. In the long run, besides acting as 
the main reference for students taking this course, I will 
continue to involve students in updating the textbook, and 
perhaps developing special topics that are of current  
interest in econophysics research.

For the open textbook chapters, students were told  
to submit a reading list for approval one week after the 

tutorial workshop on literature search. The guideline I gave 
the students was to read only the most highly cited papers 
that are relevant to the two chapters. Further, the students 
were told to read at least 10 papers each. The approved 
reading lists are shown in Appendix 4. After reading these 
monographs, reviews, and papers, students summarized 
them using a pedagogical style into first drafts of the two 
respective chapters. I then commented on the first drafts, 
before the students revised the two chapters. Snippets of 
Chapters 6 and 7 are shown in Appendix 5.

End-of-Chapter Exercises

As mentioned in the ‘Course Structure’ section, after a 
tutorial workshop on how to develop problems that would 
clarify and reinforce the econophysics concepts and meth-
ods covered, students also developed end-of-chapter exer-
cises for the chapters they are responsible for. Examples of 
these are shown in Appendix 6.

MATLAB Demos

After a tutorial workshop on how to develop MATLAB 
programmes that can help illustrate important econophys-
ics concepts, students spent two to three weeks developing 
MATLAB demos for the open textbook chapters they are 
working on. These demos are listed in Appendix 7.

Conclusions

To conclude, I taught an experimental econophysics course 
in Semester II (January–April 2013) for the 2012/2013 aca-
demic year in the NTU’s Physics and Applied Physics 
degree programme. NTU values interdisciplinarity in  
teaching, and thus PH4410 Econophysics is open to 
Business Management (Banking and Finance), Computer 
Science, Economics, Mathematical Sciences, Mathematics 
and Economics majors, in addition to Physics and Applied 
Physics majors. This course forms the core of the Econo- 
physics concentration that we are currently offering, and in 
future may seed several courses for an Econophysics degree 
programme.

Nine students completed this course, and gave very pos-
itive feedbacks. In this first offering of the course, students 
were exposed to a participatory learning format, where 
they are guided by lectures to read up the original research 
papers in the field, to produce pedagogical materials for an 
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open textbook that we plan to eventually create. They also 
developed end-of-chapter exercises for this open textbook, 
as well as MATLAB demos to better illustrate some of the 
methods discussed in class. Unfortunately, because only 
the last two chapters (out of seven planned) were devel-
oped, the open textbook project could not go live. I am now 
planning a second offering of PH4410 Econophysics in 
Semester II of the 2013/2014 academic year, where I will 
again engage students in developing the remaining chap-
ters of the open textbook. Should enough materials be 
developed, I hope to launch the open textbook at the end of 
April 2014.

Appendix 1. Sample Exercise Shown in 
Tutorial

The Pearson cross correlations between the 10 Dow Jones US 
Industry Sector indices during a particular period are given below.

BM CY EN FN HC IN NC TC TL UT

BM 0.872 0.825 0.898 0.726 0.900 0.789 0.818 0.709 0.832
CY 0.753 0.898 0.826 0.915 0.876 0.856 0.768 0.835
EN 0.750 0.663 0.776 0.720 0.745 0.607 0.759
FN 0.771 0.889 0.845 0.827 0.741 0.814
HC 0.827 0.913 0.804 0.772 0.770
IN 0.861 0.877 0.808 0.842
NC 0.852 0.783 0.819
TC 0.769 0.783
TL 0.729
UT

Draw the minimal spanning tree (MST) of these cross 
correlations.

Solution. Since we get the same MST whether we work with the 
ultrametric distances D Cij ij= −2 1( ) and start adding links from 
the one with the minimum distance, or we work directly with the 
cross correlations Cij and start adding links from the one with the 
maximum correlation, let us work with Cij.

From the table above, we see that the maximum correlation is 
Cij = 0.915, between IN and CY. We therefore connect these two 
industry sectors, as shown below.

From the table above, we see that the next largest correlation 
is Cij = 0.913, between HC and NC. Since these two industry sec-
tors are new to the MST, no cycles are possible, and we therefore 
connect these two industry sectors, as shown below.

At this point, the four sectors are not all connected yet. From 
the table above, we see that the next largest correlation is  
Cij = 0.900, between IN and BM. This link connects an existing 
industry sector, IN, to a new industry sector, BM, and hence  
there can be no cycles. We therefore draw a link between these 
two industry sectors, as shown below.

Next, we see from the table above that the next largest correla-
tion is Cij = 0.898. However, there are two pairs of industry sec-
tors with this cross correlation. The first is FN and BM, and the 
second is FN and CY. In both pairs, only FN is new to the MST. 
Both BM and CY have already been added to the MST in previ-
ous iterations. We see also that we can add the FN-BM link or the 
FN-CY link, but not both, as doing so would introduce a cycle to 
the MST. In rare cases like this, we can choose to link FN and 
BM, or FN and CY. At the level of the MST, this choice is not 
particularly important, and we shall see elsewhere in the course 
that both links would be included if we decide to draw the planar 
maximally filtered graph (PMFG) of the cross correlations. With 
this in mind, we find the still incomplete MST shown below.

We are now more than halfway through the MST construction, 
and only four more industry sectors (EN, TC, TL, UT) need to be 
added. From the table above, we see that the next largest cross 
correlation is Cij = 0.889, having already ignore the cross correla-
tion Cij = 0.898 between FN and BM because a cycle will be 
formed. The next largest cross correlation is between IN and FN, 
but we cannot draw a link between them, because a cycle will 
again be formed if we do.

Going further down, we find Cij = 0.877, between TC and IN. 
IN is already in the incomplete MST, but TC is new, and thus no 
close cycle will be formed by drawing a link between these two 
industry sectors. We therefore accept the link, to get the updated 
MST shown below.

Continuing, we find the next largest correlation to be  
Cij = 0.876, between CY and NC. Both industry sectors are not 
new to the MST, but they are in disconnected subgraphs, and 
hence no cycle will be formed if we draw a link between them. 
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Accepting this CY-NC link, we now have the incomplete MST 
shown below.

The incomplete MST is now a fully connected graph. 
However, we are still missing three more industry sectors, EN, 
TL, and UT. We continue descending the cross correlations,  
but the next five correlations (Cij = 0.872 between BM and CY,  
Cij = 0.861 between IN and NC, Cij = 0.856 between CY and TC, 
Cij = 0.852 between NC and TC, and  Cij = 0.845 between FN and 
NC) lead to cycles if we accept the links. Thus, we have to reject 
these links.

From the table above, we see that the next largest correlation 
after these is Cij = 0.842 between IN and UT. Since UT is new to 
the MST, adding a link between it and IN will not result in a cycle. 
We therefore accept the link to get the incomplete MST shown 
below.

Since we are now missing only EN and TL, we no longer need 
to systematically go through all cross correlations. Instead, we 
can just focus on the cross correlations involving EN and TL. EN 
is most strongly correlated with IN, with Cij = 0.776, while TL is 
most strongly correlated with IN, with Cij = 0.808. Adding these 
two links, the completed MST looks like that shown below.

Appendix 2. Sample MATLAB Demo 
Shown in Tutorial

Write a MATLAB programme to simulate a one-dimensional 
Ising market model

H Js s hsi i i
i

N

= − ++
=
∑ 1

1

on a periodic chain with N spins si = ±1, where J is the coupling 
between neighbouring spins (how strongly a trader is influenced 
by traders he/she knows), and h is the external magnetic field 
(how strongly past successes influence present actions) using the 
Metropolis algorithm.

Solution. Before we start coding, we should understand that 
within the Metropolis algorithm, in each Monte Carlo step, we 
pick a random spin si and flip it. This trial move is accepted with 
unit probability if ∆E = Ef – Ei < 0, and accepted with probability 
exp(– b∆E) if ∆E = Ef – Ei > 0. Here, b = 1/T is the inverse tem-
perature of the simulation. The lower the temperature, the more 
rational traders are in the market.

Since only si is flipped, we have ∆E = +2Jsi (si–1 + si+1) – 2hsi.
The MATLAB programme that we can use to simulate this at 

b = 1 is shown below.

% number of traders
N = 1000;
% duration of simulation
T = 1000000;
% simulation parameters
J = 1.0;
h = 0.5;
beta = 1.0;
% initial state
s = 2*(rand(1, N) < 0.5) – 1;
% Metropolis simulation
for t = 1:T
	 % pick random trader
	 i = floor(N*rand( )) + 1;
	 % calculate energy change
	 if i == 1
	     dE = 2*J*s(i)*(s(N) + s(i + 1)) – 2*h*s(i);
	 else
		  if i == N
			   dE = 2*J*s(i)*(s(i – 1) + s(1)) – 2*h*s(i);
		  else
			   dE = 2*J*s(i)*(s(i – 1) + s(i + 1)) – 2*h*s(i);
		  end
	 end
	 % accept flip?
	 if dE < 0
		  s(i) = –s(i);
	 else
		  if rand( ) < exp(–beta*dE)
			   s(i) = –s(i);
		  end
	 end
end
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Appendix 3. Final Examination for 
PH4410 Econophysics in Semester II,  
AY 2012/2013

The final examination for PH4410 Econophysics consists of four 
questions to be answered within two and a half hours. The ques-
tions are:

1. A pedestrian guide to random matrix theory.

Random matrix theory, first developed in nuclear physics, has  
led to exciting developments in wave optics, condensed matter 
physics, as well as number theory and statistics. There are several 
universal families of random matrices. A random symmetric  
2 × 2 matrix

A =










a a
a a
11 12

12 22

is a member of one such family, the Gaussian orthogonal ensem-
ble (GOE), if it satisfies three conditions:

1.	 for any 2 × 2 orthogonal transformation OOT = 1 = OTO, 
A′ = OAOT is also a member of the GOE;

2.	 the matrix elements a11, a12, and a22 are statistically inde-
pendent; and

3.	 the probability density P(A) dA, where dA = da11 da12 da22 
is given by

		  P(A) dA ∝ exp(–a TrA2 + b TrA + c ) dA,� (1)

	 where a > 0, b, and c are real numbers.
	 a.	� Compare P(A) in (1) with the normal distribution 

		      P(x) = −
−









1
2 22

2

2
πσ

µ
σ

exp ( ) ,x  

	 	 and explain the significance of a, b, and c.
� (3 marks)
	 b.	� Random matrix theory predicts that, while a11, a12, 

and a22  are statistically independent, the eigenvalues 
l1 and l2 are strongly correlated. To see this, let us 
write P(A) da11 da12 da22 = Q(l1, l2, q)dl1 dl2 dq in 
terms of the eigenvalues l1 and l2. q is the angle the 
normalized eignvector u1 makes with the x axis (see 
Figure 1).

	  	 (i)	� Show that the independent matrix elements of A can 
be written as

		  a11 = l1 cos2 q + l2 sin2 q,
		  a12 = (l1 – l2) cos q sin q,
		  a22 = l1 sin2 q + l2 cos2 q
			   in terms of l1, l2, and q.
� (7 marks)

		 (ii)	� Write down the Jacobian ||J|| associated with the 
change of integration variables from (a11, a12, a22) to 
(l1, l2, q), and show, without explicitly evaluating 
the determinant, that || J || ∝ | l1 – l2|. 

� (10 marks)
		 (iii)	� Hence, or otherwise, show that the joint probability 

distribution function for l1 and l1 is

	
R d d Q d d d

a

( , ) ( , , )

exp[ (

λ λ λ λ λ λ θ λ λ θ

λ λ λ λ

π

1 2 1 2 1 2 1 20

2

1 2 1
2

2

=

− − +

∫
∝| | 22

1 2 1 2) ( )] .+ +b d dλ λ λ λ

� (5 marks)

2. Minimal spanning tree and minimal spanning forest.

The minimal spanning tree (MST) is a very convenient tool to 
visualize the cross correlations between different financial 
instruments.

a.	 Describe how you would construct the MST of N stocks, 
starting from their Pearson cross correlations –1 ≤ Ci j ≤ 1.

� (10 marks)
b.	 Figure 2 shows the MST of the 36 Nikkei 500 industries 

constructed from their indices in the second half of 2007. 
The thickness of the link between two industries i and j is 
proportional to the cross correlation Ci j between them. The 
number beside each link tells us the order in which the 
links were added to the MST.

	   Explain the significance of the hubs NELI and NMAC, 
in relation to peripheral nodes like NFIN and NAIR.

� (5 marks)
c.	 Sketch the minimal spanning forest of the 36 Nikkei 500 

industries.
� (10 marks)

3. Price formation through a double auction market.

Consider a simple model of price formation through a double auc-
tion market with two groups of traders: one which puts in bid 
orders uniformly distributed between the limits p1 and p3, and 
another which puts in ask orders uniformly distributed between 
the limits p2 and p4, with p1 < p2 < p3 < p4.

(a)	 If we simulate such a model to generate a price time series 
p(t), what is the average price < p > that we should expect?

� (5 marks)
(b)	What is the variance we expect to find in the price time 

series?
� (5 marks)
(c)	 What is the average bid-ask spread we expect to find?
� (5 marks)

–sin

Figure 1. 
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(d)	What is the variance we expect to find for the bid-ask 
spread?

� (5 marks)
(e)	 Will this model produce volatility clustering in the price 

time series? Explain.
� (5 marks)

4. Agents with bounded rationality.

The economist Herbert Simon proposed that the rationality of 
individuals is limited to the information they have, the cognitive 
resources they can muster, and the time available to make deci-
sions. Because bounded rationality is still a mode of decision 
making, most economists focused on building models of the  
decision process. Such an approach makes the development of 
agent-based models (ABM) extremely challenging.

In contrast, econophysicists consider simple agents whose 
rationality is bounded by the amount of information it can inte-
grate from its neighbours. A toy model of bounded rationality is 
the Ising model

H J s s h sij i j i i
ii j

= − +∑∑
( , )

on a square lattice shown in Figure 3. In this model, an agent can 
buy (si = +1) or sell (si = –1), and it arrives at this decision by 
considering what its neighbours are doing (–∑(i, j) Jij si sj) and also 
its own decision (hi si).

a.	 Describe how you would simulate such a model at inverse 
temperature b = T–1, using the Metropolis algorithm. 

� (10 marks)
b.	 Elaborate on how this toy model provides a stylized expla-

nation of booms and busts in the financial markets.
� (10 marks)
c.	 In real markets, traders do not just buy and sell. They 

sometimes decide to hold. We can incorporate this  

Figure 2.

Figure 3.
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behaviour into the model by going from si = ±1 to si = 
–1, 0, +1, keeping the Hamiltonian H the same.

	   Describe the most important differences between the 
dynamics of this modified Ising model and that of the 
original Ising model.

� (5 marks)
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Appendix 5. Snippets from Chapters 6 
and 7 of the Open Textbook

Chapter 6

After our discussion in part A about correlation filtering and 
MST, we can now start using them to make stocks clusters. There 
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are different methods on doing time series clustering for  
stocks. In this chapter we will only discuss some of them; hierar-
chical clustering, k-means clustering, spectral clustering, and 
many others. Next, we will try to discuss more in depth each of 
them.

Hierarchical Clustering

Hierarchical structures exist in different complex systems, and 
the financial market is no exception. A hierarchical structure is 
defined as the organization of the elements into clusters each con-
sisting of subclusters and so on up to a certain level (Simon, 
1962). We can observe this hierarchy by mapping the hierarchical 
tree from the correlation matrix that we studied in the previous 
part. The hierarchical tree is based on the correlation between 
stocks, therefore a correlation matrix, an MST, or a PMFG would 
suffice to make a hierarchical tree. Different correlation based 
network can be associated with the same hierarchical tree.

Now let us consider the triangular version of the 4 × 4 correla-
tion matrix that we have in the previous section.

C =



















1 00 0 13 0 90 0 81
1 00 0 57 0 34

1 00 0 71
1 00

. . . .
. . .

. .
.

Suppose we name each stock based on its index such as stock 
1, 2, 3, and 4. From this correlation matrix, we can proceed to 
make a hierarchical tree with two methods, average linkage clus-
ter analysis (ALCA) and single linkage cluster analysis (SLCA). 
The example below is about making SLCA. This algorithm is 
based on Mantegna’s research on 2008.

1.	 Set a matrix B = C = 

1 00 0 13 0 90 0 81
1 00 0 57 0 34

1 00 0 71
1 00

. . . .
. . .

. .
.



















2.	 Choose the maximum correlation bhk in the correlation 
matrix B. In this case we choose h and k to be a simple 
cluster of one element each while they can actually be 
larger clusters. In this case, the maximum correlation bhk =  
0.90 where h = 1 and k = 3. For all i ∈ h and j ∈ k, sets the 
elements pij

< of the matrix CSLCA
<  as p p bij ji hk

< <= = .
3.	 Merge cluster h and k into a single cluster q. The merging 

operation identifies a node in a rooted tree connecting h 
and k at the correlation bhk. So the merged index will be the 
stock corresponding to the indices 3 and 4. Note that after 
merger the matrix size will be (M – 1) × (M – 1) instead of 
M × M.

4.	 Redefine the matrix B:

b Max b b j h and j k
b b otherwise
q j hj kj

ij ji

= ∉ ∉
=







[ , ],
,

After the first implementation of algorithm B changed as 
shown as below:

B =
















1 00 0 57 0 81
1 00 0 34

1 00

. . .
. .

.

	   The above matrix B corresponds to:

1/3 2 4
1/3 1.00 0.57 0.81
2 0.57 1.00 0.34
4 0.81 0.34 1.00

	 1/3 represents the cluster made of stock 1 and 3. Following 
the algorithm, we get each element of the matrix to be the 
highest correlation of the element with the new cluster. 
Note that stock 1 and stock 3 are connected in the hierar-
chical tree at correlation 0.90 which was the largest  
correlation between stock 1 and stock 3.

	   If we continue the procedure, we will get the corre-
sponding matrix:

B =










1 00 0 57
0 57 1 00
. .
. .

	   Where now the cluster 1/3 is merged with stock 4 at 
correlation 0.81. Applying the procedure one more time, 
we get the cluster 1/3/4 to be connected with stock 2 at 
correlation 0.57. At this point the matrix size is 1, and thus 
we can make the corresponding hierarchical tree shown 
below:

	   Whereas the corresponding matrix associated with  
SLCA is

	

CSLCA
< =


















1 00 0 57 0 90 0 81
1 00 0 57 0 57

1 00 0 81
1 00

. . . .
. . .

. .
.



	 ALCA will later be encountered in the exercise problem.

This hierarchical structure might be useful to extract meaning-
ful economic taxonomy. In our dummy correlation matrix, this 
tree might not be very useful. However, if we are analyzing con-
siderably more stocks we might arrive to some interesting conclu-
sive. For example, Mantegna detected that ores companies are 
affected differently than aluminium and copper companies which 
traditionally classified as raw materials companies according to 

0.51

0.81

0.90

1 3 4 2

Figure 1. Hierarchical tree representing the 
correlation matrix, not drawn to scale.
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Forbes. In his research he found that ore companies form differ-
ent cluster than the two other kinds of companies based on the 
hierarchical tree. 

Hierarchical clustering can thus be visualized better with 
using colour map. Consider colour map of S&P 100 in no particu-
lar order.

By using the algorithm presented by the Matlab demo, we can 
apply SLCA to obtain the corresponding hierarchical tree. Sorting 
the stocks according to their hierarchy will result on the colour 
map below.

After the stocks are ordered according to the SLCA, some  
yellowish squares started to appear. Those squares signify  
clusters since it means that highly correlated stocks are placed 
nearly located to each other in the hierarchical tree. The arrow 
shows where the cluster is. The more stocks we include in the 
calculation, the more obvious the clusters can be seen.

Chapter 7

Genetic Algorithm

The technique employed for the agents to adapt and evolve is 
called the Genetic Algorithm (GA). This was applied to the SFI 
Market model. GA is a stochastic search algorithm based on the 
mechanics of natural selection (Darwin, 1897) and population 
genetics (Mettler et al., 1988). It is modelled after natural genetic 
operators that enable biological populations to effectively and 
robustly adapt to their environment and to changes in their 
environment. 

Since the algorithm is based on biological evolution, it makes 
sense to first describe the process from the biological point of 
view, before we take on the financial perspective. Evolution 
occurs in organic entities capable of encoding the structure of  
living organisms. These entities are known as chromosomes. 
Chromosomes transform due to mutations and crossovers. The 
objective of mutation is to introduce diversity into the population, 
whereas a crossover enhances the schemata[13]. The diagram 
below illustrates a reproduction process of the cell (agent) after 
the genetic operator modifies the offspring’s string, or introduces 
new strings into the system. 

Now that you have some sense of how a GA works, we are 
going to introduce the rules of GA as they were conceived by 
John Holland[13]. There are four basic elements:

1.	 Chromosome: different types of decisions, resources,  
etc. 

2.	 Creator: generalize by an operator that starts by generating 
an initial pool of chromosomes.

3.	 Evaluator: rates each chromosome by giving the highest 
rating to those that are able to solve their task most of the 
time. 

4.	 Generator: uses mutate and crossover operations to 
randomly reconfigure the solutions specified by the 
chromosomes. 

The elements are an example of how an organism evolves into 
an effective system, and also a process of natural selection of the 
fittest chromosome. This selection process consists of a few mod-
ules, namely, population, interaction, evaluation, reproduction 

Figure 2. The colours represent correlations between 
stocks where lighter colours have more correlation than 
darker colours.

Figure 3. Ordered colour map with SLCA.

(1 2 3 4 5 6 7 8 9)

(1 0 0 0 0 0 0 0 1)

(1 2 3 4 5 0 0 0 1)

(1 0 0 0 0 6 7 8 9)
Crossover

Figure 4. Cross-over operator.
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and modification[13]. The sequence of a genetic algorithm is as 
follows:

1.	 We first initialize a number of traders
2.	 Each trader has a string that acts as their strategies during 

the interactions.
3.	 During the ‘Market Period’, the Traders interact with the 

system:
	 (a)	 �The algorithm evaluates the fitness of the population. 

e.g., wealth of the agent.
	 (b)	 �System removes agents based on the fitness of the 

agents. Traders that did not make as much profit as the 
rest would be remove from the model.

	 (c)	� The agents reproduce with the probability that is pro-
portional to their fitness criterion. With this, the sub-
sequent generation will contain strategies that will 
make them ‘fitter’ through the trading process.

	 (d)	 �Perform modification to the ‘newly created traders’ 
using genetic operators.

4.	 Outputs the end result for the ‘Market cycle’ and loop the 
process

In general, we are trying to evolve the population, or rather 
teach the agents such that they are best adapted to the environ-
ment. However, with only this process, the agents do not evolve 
over time and the agents left behind after going through GA will 
be one of the agents we created at the start. 

Classifier System

The classifier system (CS) is an adaptive rule-based system which 
learns syntactically simple string rules, called classifiers, as intro-
duced by Holland and Reitman (1978). It has the ability to learn 
to classify messages from the environment into general sets. This 
is similar to the feedback process in control system in many 
respects. The mechanism of the CS works with rules as condition/
action rules—each rule is a simple message as the message act as 
conditions to the other rules. When more than one rule is trig-
gered by a condition, the one with the highest strength will win. 

Figure 5. An illustration of agents interacting in on a lattice.

Source: http://www.scidacreview.org/0802/html/abms.html
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Therefore the mechanism requires a certain form of strength to be 
calculated. This is done with the Bucket-Brigade Algorithm. 
When a rule wins, it pays the condition money in terms of strength 
and when it triggers other rules, the winner pays him. This covers 
as a useful measure to the rules contribution to the system. 

By coupling the CS and the GA, the GA will act to revise the 
rules and reproduces by the strength of the rule. The complex 
system simulated by these 2 mechanism causes clusters and hier-
archies of rules to emerge.

Appendix 6. End-of-Chapter Exercises

Chapter 6

Ex. 6.1. (Ian Beng Hau Tan)

In this exercise, you will be guided through the process of gener-
ating the correlation matrix in MATLAB. You will then be guided 
through methods to generate the MST using either MATLAB or 
Gephi, an open source visualization software for networks. 

1.	 Use the Historical Stock Data utility written by Josiah 
Renfree on the MATLAB File Exchange website, which 
automatically downloads stock prices to the MATLAB 
array structure price (i). For this part of the exercise, read 
the documentation on the Historical Stock Data utility and 
download the daily returns for the Dow Jones 30 over a 
period of two years. 

	   We will use the Pearson correlation coefficient, given 
by

ρij
i j j

i i j j

YY Y Y

Y Y Y Y
=

−

−( ) −( )
i

2 2 2 2

	 where Y is the log return of a stock, Yi = ln Pi (t) – ln Pi
(t – Dt). For this exercise, use P, the closing price of a 
stock i at the end of an interval t. We denote Dt as the time 
horizon.  

2.	 For each stock i in the Dow Jones 30, generate the time 
series Pi in MATLAB using a time horizon of 1 trading 
day.  

3.	 Generate the log return series Yi.  
4.	 Generate the correlation matrix, using the command z = 

corr(y).
5.	 Generate the MST: 

		�  With MATLAB. First, create a linkage tree by using 
the linkage function (requires MATLAB Statistics 
Toolbox), or generate your own matrix of unique 
links and convert it into a tree structure. Next, use this 
linkage tree as an input into graphminspantree 
(requires MATLAB Bioinformatics Toolbox). Those 
who do not have access to either toolbox may try  
the free MatlabBGL toolbox on the MATLAB File 
Exchange. 

		�  Without MATLAB. Use the open source software 
Gephi, available for Mac, Windows and Linux plat-
forms. Generate a matrix of unique links, as shown in 

Section 6.1.3. The matrix of unique links can be saved 
in UCINET DL or CSV formats with a slight modifi-
cation (see the online documentation in the Gephi 
web site). Import this DL or CSV file into Gephi and 
the software will do the rest. 

		  Bonus: generating the PMFG
		�  The steps are similar to that for the MST. The easiest 

way to generate the PMFG in MATLAB is to use the 
(free) PMFG routine developed by Tomaso Aste in 
MATLAB File Exchange. This routine requires the 
(also free) MatlabBGL toolbox, also available on 
MATLAB File Exchange. Alternatively, generate the 
matrix of unique links and input this into Gephi. 

Chapter 7

Ex. 7.4. (Henry Pui Loong Lee & Boon Kin Teh)

In this exercise, we will demonstrate how to write a basic pro-
gramme that simulates the agent-based Ising model using the 
Metropolis algorithm, which is given below.

Agent based Ising model (Metropolis algorithm) 

(a) A trader is randomly drawn from the square lattice say 
trader i, and try to flip the decision made.
Si → –Si

(b) Calculate the energy difference flipping, H(t) and after 
flipping, H(t+) as

DH = H(t+) – H(t) = 2a S t S t beS ti j ij NN
( ) ( ) ( ).+

=∑ 2�

(c) Then decide the flip is accepted or not

∆
∆ ∆
H
H

always accept
k H

<
> −







0
0 Accept with probabily exp( )

(d) Iterate steps (i) to (iii).

1.	 First, we need to have a N × N lattice, in which the spins 
point up or down randomly. Write a programme that will 
generate a N × N square lattice with random decision, 
which are either buy or sell. 

2.	 The Metropolis algorithm is a stochastic process, as it 
picks a trader randomly from the lattice in step (b). Write 
a programme that does this.

3.	 In the real world, there are a large number of traders in the 
financial market. However, to simulate such a large sys-
tem we require a lot of computational power. We therefore 
impose periodic boundary conditions on the system. In 
periodic boundary condition, the boundaries of each end 
are connected to the opposite end. You can imagine the 
square lattice lying on the surface of a torus. 

	   After picking a trader, we have to decide whether the 
trial flip is accepted, according to the detail balance rule 
stated in step (c). 
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	   Write a programme that calculates the energy difference 
as in steps c) in the algorithm, ensuring periodic boundary 
conditions.

4.	 Now you have all the pieces to simulate the agent based-
Ising model, write an iterative programme that combines 
all the code. 

Appendix 7. MATLAB Demos

Chapter 6

%	� File:	 hiertree.m
%	� Authors:	 Tan Beng Hau
%
%	� Description:	�A dendrogram is constructed based on a given 
% 		�  clustering method. The dendrogram sorts accord-
% 		�  ing to the ultrametric distance. This sorting is 
% 		  used to create a colour map of the clustering.
% 		�  For more distinct clusters, use more stocks in the 
% 		  portfolio.
%	� Requires:	 Matlab Statistics Toolbox
%
%	� Acknowledgements:
%	� hist_stock_data.m downloader from Matlab File Exchange
%	� Kenneth Lee for advice 

%	� Download the stock prices for the stocks from a text file
labels = importdata(‘TICKERS100.txt’); % S&P 100
price = �hist_stock_data(‘01012010’,‘31122011’,  

‘TICKERS100.txt’);

for	i = 1:numel(labels)
	 price2(:,i) = [price(i).AdjClose(end:-1:1)];
	 % other ways may result in structtodouble error.
end

y = diff(log(price2)); %log returns

%	� Initialise the correlation matrix
z = corr(y);

D = pdist(z,‘correlation’);
%	� Sornette’s metric distance
%	� Another approach is to define your own distance. 
ds = sqrt(2*D);

%	� Linkage options given by the Statistics Toolbox are:
%	� single, average, ward, complete, weighted, median, centroid, 

ward
%	� If the linkage option is not defined, carries out SLCA by 

default.
%	� I believe centroid clustering is k-means, where k can be 

defined in 
%	� cluster(tree,k).

%	� Metric information:
%	� ‘correlation’ calculates 1 – r_ij, where r_ij is the Pearson 
%	� correlation coefficient.

tree = linkage(z,‘single’,‘correlation’); 
%	� Scale tree weights to Sornette’s metric distance
for i=1:size(tree,1)
	 tree(i,3) = sqrt(2*tree(i,3));
end

%	� I didn’t implement this but it should be easy to. 
%	� t_cluster = cluster(tree, ‘maxclust’,8);

%	� Perform the leaf ordering based on the Sornette metric
leafOrder = optimalleaforder(tree,ds,‘Transformation’,‘inverse’);
[H,T1,outperm] = 
dendrogram(tree,100,‘Reorder’,leafOrder,‘labels’,labels,‘Color 
Threshold’,‘default’,‘Orientation’,‘left’);
xlabel(‘Ultrametric distance’); ylabel(‘Stocks’);
title(‘Dendrogram of the S&P 100’);

%	 Construct the ‘random’ colour map

figure(2)
colormap(hot); % To reverse gray colormap, use colormap 
(flipud(gray)).
cmin = 0; cmax = 1; % Define the color mapping space
imagesc(z)
caxis([cmin cmax]);
title(‘S&P 100 in no particular order’);

%	 Reconstruct the matrix from the SLCA ordering
CM_reconst = z(outperm,outperm);

%	 Construct the SLCA-ordered colour map

figure(3)
colormap(hot); % To reverse gray colormap, use colormap 
(flipud(gray)).
cmin = 0; cmax = 1; % Define the color mapping space
imagesc(CM_reconst)
caxis([cmin cmax]);
title(‘Single linkage cluster analysis of S&P 100’);

Chapter 7

%	 function [M, E] = Metropolis_Stock(N,J,B,steps)
%	 to watch the movie, use this code
%	 Metropolis(250,1,0.001,1000)
%	 Metropolis_Stock(250,–1,0.001,1000)	 %	 market converges to 
%			   equilibrium 
%	 Metropolis_Stock(128,2/3,0,1000)	 %	� noisy normal market
%===========================================
%	 [M, E] = Metropolis(N,J,B,steps) 
%		  Updates a single site at a time. 
%		  Choose sites at random to ensure no bias. The 
%		  probabilistic part of the algorithm is done using a 
%		  random number generator
%
%	 sigma	 -	 Ising Matrix ‘space’
%			   Every i,j represents ONE Agent
%	 N	 -	 number of rows and cols
%	 J	 -	 Coupling Constant 
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%	 B	 -	 Magnetic field (1 = all black -1 = all white)
% 
%	 steps	 -	 number of iterations
%	 dE	 -	 Change in Energy
%	 beta(1/kT)	 -	� inverse temperature times interaction 

strength 
%			   (beta >= 0)
%			   (critical value = 0.8813736) 
%			   beta has no meaning if <=0
%			�   Beta determines how “much” agents interact 
%			   with each other
% E	 -	 Higher E → “closer” to equlibrum
%===========================================

figure(1)
set(gcf,‘Position’,[200 50 500 500],‘Color’,‘White’)

N=250;	 %	 128;%250; % no of traders
J=1;	 %	 coupling constant 
B=0.01;	 %	 0.5 dissappear %0;%.1; %–0.5:0.5 
steps=1000;
M=zeros(steps);
E=zeros(steps);
randTol = 0.1; 
%	 The tolerance, dampens the spin flip process rand(‘twister’); 
%	� seed rand()
sigma = (–1).^(round(rand(N))); % initial market state 
%	� First we generate a random initial configuration→ ‘Ising Space’

%	� beta=2*log(1+sqrt(2)); % 2*log(1+sqrt(2)) bring to 
equilibrium 

%	 state or o.w market cool down –0.5; 
%	 Beta will be determine by a GA
RandNum = rand(steps,1); 
%	 get rand first before the for loop. Func called once 

market_mood=2;  %randi(4);
%	 first mood
old_market_mood=market_mood; 
%	 for first mood
market_cycle=50; 
%	 how often the market mood changes in steps(time)
behaviour_of_market=randi(4,(steps/market_cycle)+1,1); 
%	 preallocate number of ‘moods’ needed
current_cycle=1;
%	 count no of cycles

if ~isinteger(int8(steps/market_cycle))
	 disp([‘You have not entered a market cycle divisible 
by’,num2str(steps)])
	 market_cycle=100;
end

for i=1:steps
	   neighbours = circshift(sigma, [0 1]) + ... 
		  % up
		  circshift(sigma, [0 –1]) + ... 
		  % down

		  circshift(sigma, [1 0]) + ... 
		  % right
		  circshift(sigma, [–1 0]); 
		  % left

	� dE = (J*(sigma .* neighbours) + B*sigma);  
% Calculates the change in energy of flipping a spin

	 % dE = –2 * neighbours + 4 + 2 * B * sigma;
	 % if dE <= 0 we make the proposed Change,
	 % if dE > 0 we make the change with probability e^(dE/kT)
	 % here kT =1

	 % beta=stock_market1(neighbours,sigma,N);

	 �[beta
	� market_mood]=stock_market2(neighbours,N, 

market_mood,old_market_mood,RandNum(i,1)); %super 
stock market!

	 old_market_mood=market_mood;
	� % stock_market returns a NON ZERO market_mood, we 

can keep it

	 current_cycle=((i/market_cycle ~= 
	 current_cycle)*current_cycle)+(i/market_cycle == 
	 current_cycle)*(current_cycle+1);
	� % if steps NOT reach use old mood, else change mood of 

market

	� market_mood=(i/market_cycle == current_cycle-1)* 
behaviour_of_market(current_cycle);

	 %	 market mood changes every 500 steps←set by user 
	 %	 current_cycle was increase since the first
	 %	 step so i need to -1 to the current_cycle

	 %	� prob = exp(dE); 
	 %	� probability whether or not to flip a spin  

prob = exp(-beta.*dE); % change beta to a NxN matrix! 
	 %	 the negative is with the dE term
	� transitions = (rand(N) < prob ).*(rand(N) < randTol) * –2 + 

1; % The ‘new’ space

	 sigma = sigma .* transitions;
	 M(i) = sum(sum(sigma));
	 % �E(i) = –sum(sum(dE))/2; 
	 % Divide by two because of double counting
	� E(i) = sum(sum(dE))/2; 
	 % Divide by two because of double counting

	 %=======================================
	 %===========Output phase===================
	 image((sigma+1)*128);
	� plot_title = sprintf(‘%dx%d Stock Market variant of 

Metropolis Ising model’,N,N);	 %  converts to string
	 title(plot_title);
	� xlabel(sprintf(‘J = %0.2f, M = %0.2f, E = %0.2f, i= %d’,  

J, M(i)/N^2, E(i)/N^2 , i));
	 %set(gca,’YTickLabel’,[],‘XTickLabel’,[]);
	� set(gca, ‘YTickLabel ’ , [] , ‘XTickLabel ’ , [] , ‘XTick’ ,[] , 

‘YTick’,[]); 
	 axis square; colormap copper; drawnow;
%===========================================
end %end of for loop!
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figure(2)
set(gcf,‘Position’,[200 50 1800 700],‘Color’,‘White’)
%subplot(1,2,1)
hold on
plot(1:steps,E(:,1),‘–’)
xlim([0 steps])
%ylim([0 2*10^5]) %?????????????????????????????
title([‘Price’]);

%subplot(1,2,2)
%hold on
%plot(1:steps,beta,‘–’)
%xlim([0 steps])
%ylim([–1 1]) %?????????????????????????????
%title([‘beta’]);
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